Full-text resources of CEJSH and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


2015 | 43 | 1 | 49-59

Article title

Classification of Patients Treated for Infertility Using the IVF Method

Title variants

Languages of publication

EN

Abstracts

EN
One of the most effective methods of infertility treatment is in vitro fertilization (IVF). Effectiveness of the treatment, as well as classification of the data obtained from it, is still an ongoing issue. Classifiers obtained so far are powerful, but even the best ones do not exhibit equal quality concerning possible treatment outcome predictions. Usually, lack of pregnancy is predicted far too often. This creates a constant need for further exploration of this issue. Careful use of different classification methods can, however, help to achieve that goal.

Keywords

Publisher

Year

Volume

43

Issue

1

Pages

49-59

Physical description

Dates

published
2015-12-01
online
2016-01-06

Contributors

  • Department of Statistics and Medical Informatics, Medical University of Bialystok, Poland
  • Department of Statistics and Medical Informatics, Medical University of Bialystok, Poland
  • Department of Statistics and Medical Informatics, Medical University of Bialystok, Poland
  • Department of Statistics and Medical Informatics, Medical University of Bialystok, Poland
  • Department of Biology and Pathology of Human Reproduction, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Olsztyn, Poland
  • Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
author
  • Shore Institute for Reproductive Medicine, Lakewood, USA
  • The Chair of Logic, Informatics and Philosophy of Science, University of Bialystok, Poland
  • Department of Reproduction and Gynecological Endocrinology, Medical University of Bialystok, Poland

References

  • Boser, B. E., Guyon, I. M., & Vapnik, V. N. (1992). A training algorithm for optimal margin classifiers, In D. Haussler (Ed.), 5th Annual ACM Workshop on COLT (pp. 144–152). Pittsburgh, PA, USA: ACM Press.
  • Breiman, L. (2001). Random Forests. Machine Learning, 45(1), 5–32.[Crossref][WoS]
  • Li, S. (2009). Random KNN Modeling and Variable Selection for High Dimensional Data. (Doctoral Dissertations, West Virginia University). Available from Proquest, Umi Dissertation Publishing (AAI3381197).
  • Liaw, A., & Wiener, M. (2002). Classification and Regression by randomForest. R News, 2(3), 18–22.
  • Malinowski, P., Milewski, R., Ziniewicz, P., Milewska, A. J., Czerniecki, J., & Wołczyński, S. (2013). Classification Issue in the IVF ICSI-ET Data Analysis: Early Treatment Outcome Prognosis. Studies in Logic, Grammar and Rhetoric. Logical, Statistical and Computer Methods in Medicine, 35(48), 103–115.
  • Malinowski, P., Milewski, R., Ziniewicz, P., Milewska, A. J., Czerniecki, J., & Wołczyński, S. (2014). The use of data mining methods to Predict the Result of Infertility Treatment Using the IVF ET Method. Studies in Logic, Grammar and Rhetoric. Logical, Statistical and Computer Methods in Medicine, 39(52), 103–115.
  • Meyer, D., Dimitriadou, E., Hornik, K., Weingessel, A., & Leisch, F. (2014). e1071: Misc Functions of the Department of Statistics (e1071), TU Wien (R package version 1.6–4). Retrieved from
  • Milewska, A. J., Górska, U., Jankowska, D., Milewski, R., & Wołczyński, S. (2011). The use of the basket analysis in a research of the process of hospitalization in the gynecological ward. Studies in Logic, Grammar and Rhetoric. Logical, Statistical and Computer Methods in Medicine, 25(38), 83–98.
  • Milewska, A. J., Jankowska, D., Citko, D., Więsak, T., Acacio, B., & Milewski, R. (2014). The use of principal component analysis and logistic regression in prediction of infertility treatment outcome. Studies in Logic, Grammar and Rhetoric. Logical, Statistical and Computer Methods in Medicine, 39(52), 7–23.
  • Milewski, R., Jamiołkowski, J., Milewska, A. J., Domitrz, J., Szamatowicz, J., & Wołczyński, S. (2009). Prognosis of the IVF ICSI/ET procedure efficiency with the use of artificial Neural networks among patients of the Department of Reproduction and Gynecological Endocrinology. Ginekologia Polska, 80(12), 900–906.
  • Milewski, R., Malinowski, P., Milewska, A. J., Czerniecki, J., Ziniewicz, P., & Wołczyński, S. (2011). Nearest neighbor concept in the study of IVF ICSI/ET treatment effectiveness. Studies in Logic, Grammar and Rhetoric. Logical, Statistical and Computer Methods in Medicine, 25(38), 49–57.
  • Milewski, R., Milewska, A. J., Czerniecki, J., Leśniewska, M., & Wołczyński, S. (2013). Analysis of the demographic profile of patients treated for infertility using assisted reproductive techniques in 2005–2010. Ginekologia Polska, 84(7), 609–614.
  • Milewski, R., Milewska, A. J., Więsak, T., & Morgan, A. (2013). Comparison of artificial neural networks and logistic regression analysis in pregnancy prediction using in the in vitro fertilization treatment. Studies in Logic, Grammar and Rhetoric. Logical, Statistical and Computer Methods in Medicine, 35(48), 39–48.
  • Oba, S., Sato, M., Takemasa, I., Monden, M., Matsubara, K., & Ishii, S. (2003). A Bayesian missing value estimation method for gene expression profile data. Bioinformatics, 19(16), 2088–2096.[Crossref]
  • Radwan, J. (2011). Epidemiologia niepłodności. In J. Radwan, & S. Wołczyński (Eds.), Niepłodność i rozród wspomagany (pp. 11–14). Poznań, Polska: Termedia.
  • Stekhoven, D. J., & Bühlmann, P. (2012). MissForest – non-parametric missing value imputation for mixed-type data. Bioinformatics, 1(28), 112–118.[WoS]
  • Stekhoven, D. J. (2013). missForest: Nonparametric Missing Value Imputation using Random Forest (R package version 1.4). Retrieved from
  • Templ, M., Alfons, A., Kowarik, A., & Prantner, B. (2015). VIM: Visualization and Imputation of Missing Values (R package version 4.3.0). Retrieved from

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.doi-10_1515_slgr-2015-0041
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.