PL EN


2013 | 35 | 1 | 117-127
Article title

Poincaré Plots in Analysis of Selected Biomedical Signals

Title variants
Languages of publication
EN
Abstracts
EN
Poincaré plot is a return map which can help perform graphical analysis of data. We can also fit an ellipse to the plot shape by determining descriptors SD1, SD2 and SD1/SD2 ratio to study the data quantitatively. In this paper we show examples of application of Poincaré plots in analysis of various kinds of biomedical signals: RR intervals, EMG, gait data and EHG.
Keywords
Publisher
Year
Volume
35
Issue
1
Pages
117-127
Physical description
Dates
published
2013-12-01
online
2013-12-31
Contributors
  • Department of Medical Informatics, University of Bialystok, Poland
References
  • Biala, T., Godge, M., Schlindwein, F. S., & Wailoo, M. (2010). Heart rate variability using Poincaré plots in 10 year old healthy and intrauterine growth restricted children with reference to maternal smoking habits during pregnancy. In Conference Proceeding: Computingin Cardiology, 26-29 September 2010 (pp. 971-974). Belfast, Ireland.
  • Brennan, M., Palaniswami, M., & Kamen, P. (2001). Do existing measures of poincare plot geometry reflect nonlinear features of heart rate variability. IEEE Transactions on Biomedical Engineering, 48, 1342-1347. DOI: 10.1109/10.959330.[Crossref]
  • Faust, O., Acharya, U. R., Molinari, F., Chattopadhyay, S., & Tamura, T. (2012). Linear and non-linear analysis of cardiac health in diabetic subjects. Biomedical Signal Processing and Control, 7, 295-302. DOI: 10.1016/j.bspc.2011.06.002.[Crossref][WoS]
  • Goldberger, A. L., Amaral, L. A. N., Glass, L., Hausdorff, J. M., Ivanov, P. Ch., Mark, R. G., Mietus, J. E., Moody, G. B., Peng, C.-K., & Stanley, H. E. (2000). PhysioBank, PhysioToolkit, and PhysioNet: Components of a New Research Resource for Complex Physiologic Signals. Circulation, 101(23), e215-e220. Retrieved July 30, 2013, from Circulation Electronic Pages: http://circ.ahajournals.org/cgi/content/full/101/23/e215.
  • Hoshi, R. A., Pastre, C. M., Vanderlei, L. C. M., & Godoy, M. F. (2013). Poincaré plots indexes of heart rate variability: relationship with other nonlinear variables. Autonomic Neuroscience, Retrieved July 30, 2013, from ScienceDirect database on the World Wide Web: http://www.sciencedirect.com. DOI: 10.1016/j.autneu.2013.05.004.[Crossref]
  • Karmakar, C. K., Khandoker, A. H., Gubbi, J., & Palaniswami,M. (2009). Complex correlation measure: a novel descriptor for Poincaré plot. BioMedical Engineering OnLine, 8(17). Retrieved July 30, 2013, from BioMedical Engineering OnLine on the World Wide Web: http://www.biomedical-engineering-online.com. DOI: 10.1186/1475-925X-8-17.[Crossref]
  • Kitlas, A., Oczeretko, E., Kowalewski, M., & Urban, M. (2004). Poincaré plots in analysis of heart rate variability. Physica Medica, XX (Suppl. 1), 76-79.
  • Piskorski, J., & Guzik, P. (2007). Geometry of Poincaré plot of RR intervals and its asymmetry in healthy adults. Physiological Measurement, 28, 287-300. DOI: 10.1088/0967-3334/28/3/005.[Crossref][PubMed][WoS]
  • Tulppo, M. P., Makikallio, T. H., Takala, T. E. S., & Seppanen, T. V. H. H. (1996). Quantitative beat-to-beat analysis of heart rate dynamics during exercise. American Journal of Physiology, 271, H244-H252.
  • Woo, M. A., Stevenson, W. G., Moser, D. K., Trelease R. B., & Harper, R. M. (1992). Patterns of beat-to-beat heart rate variability in advanced heart failure. American Heart Journal, 123(3), 704-710.
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.doi-10_2478_slgr-2013-0031
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.