Full-text resources of CEJSH and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


2013 | 35 | 1 | 49-70

Article title

Computer-Aided Diagnosis of Liver Tumors Based on Multi-Image Texture Analysis of Contrast-Enhanced CT. Selection of the Most Appropriate Texture Features

Title variants

Languages of publication

EN

Abstracts

EN
In this work, a system for the classification of liver dynamic contest- enhanced CT images is presented. The system simultaneously analyzes the images with the same slice location, corresponding to three typical acquisition moments (without contrast, arterial- and portal phase of contrast propagation). At first, the texture features are extracted separately for each acquisition mo- ment. Afterwards, they are united in one “multiphase” vector, characterizing a triplet of textures. The work focuses on finding the most appropriate features that characterize a multi-image texture. At the beginning, the features which are unstable and dependent on ROI size are eliminated. Then, a small subset of remaining features is selected in order to guarantee the best possible classification accuracy. In total, 9 extraction methods were used, and 61 features were calculated for each of three acquisition moments. 1511 texture triplets, corresponding to 4 hepatic tissue classes were recognized (hepatocellular carcinoma, cholangiocarcinoma, cirrhotic, and normal). As a classifier, an adaptive boosting algorithm with a C4.5 tree was used. Experiments show that a small set of 12 features is able to ensure classification accuracy exceeding 90%, while all of the 183 features provide an accuracy rate of 88.94%.

Keywords

Publisher

Year

Volume

35

Issue

1

Pages

49-70

Physical description

Dates

published
2013-12-01
online
2013-12-31

Contributors

author
  • Faculty of Computer Science, Bialystok University of Technology, Poland
  • Faculty of Computer Science, Bialystok University of Technology, Poland
  • Signal and Image Processing Laboratory (LTSI), University of Rennes 1, France
  • National Institute of Health and Medical Research (INSERM), University of Rennes 1, France

References

  • Bilello, M., Gokturk, S. B., Desser, T., Napel, S., Jeffrey, R. B., & Beaulieu, C. F. (2004). Automatic detection and classification of hypodense hepatic lesions on contrast-enhanced venous-phase CT. Med. Phys., 31(9), 2584-2593. DOI: 10.1118/1.1782674.[PubMed][Crossref]
  • Bruno, A., Collorec, R., Bezy-Wendling, J., Reuze, P., & Rolland, Y. (1997). Texture analysis in medical imaging. In C. Roux & J.-L. Coatrieux (Eds.), Contemporary perspectives in three-dimensional biomedical imaging (pp. 133-164). Amsterdam, Netherlands: IOS Press. DOI: 10.3233/978-1-60750-874-8-133. [Crossref]
  • Chen, C.-C., DaPonte, J., & Fox, M. (1989). Fractal feature analysis and classification in medical imaging. IEEE Trans. Med. Imag., 8(2), 133-142. DOI: 10.1109/42.24861.[Crossref]
  • Chen, E.-L., choo Chung, P., Chen, C.-L., Tsai, H.-M., & Chang, C.-I. (1998). An automatic diagnostic system for CT liver image classification. IEEE Trans.Biomed. Eng., 45(6), 783-794. DOI: 10.1109/10.678613.[Crossref]
  • Chu, A., Sehgal, C., & Greenleaf, J. (1990). Use of gray value distribution of run lengths for texture analysis. Pattern Recog. Lett., 11(6), 415-419. DOI: 10.1016/0167-8655(90)90112-F.[Crossref]
  • Duda, D., Kretowski, M., & Bezy-Wendling, J. (2004). Texture-based classification of hepatic primary tumors in multiphase CT. In C. Barillot, D. Haynor, & P. Hellier (Eds.), Medical Image Computing and Computer-Assisted Intervention MICCAI’2004 (Vol. 3217, pp. 1050-1051 Part II). Springer Berlin Heidelberg. DOI: 10.1007/978-3-540-30136-3 133.[Crossref]
  • Duda, D., Kretowski, M., & Bezy-Wendling, J. (2006). Texture characterization for hepatic tumor recognition in multiphase CT. Biocybern. Biomed. Eng., 26(4), 15-24. Retrieved July 31, 2013, from http://www.ibib.waw.pl/bbe/bbefulltext/BBE264015FT.pdf.
  • Freund, Y., & Schapire, R. E. (1997). A decision-theoretic generalization of online learning and an application to boosting. J. Comput. Syst. Sci., 55(1), 119-139. DOI: 10.1006/jcss.1997.1504.[Crossref]
  • Galloway, M. M. (1975). Texture analysis using gray level run lengths. Comput. Graph. Image Process., 4(2), 172-179. DOI: 10.1016/S0146-664X(75)80008-6.[Crossref]
  • Gletsos,M.,Mougiakakou, S.,Matsopoulos, G., Nikita, K., Nikita, A., & Kelekis, D. (2003). A computer-aided diagnostic system to characterize CT focal liver lesions: design and optimization of a neural network classifier. IEEE Trans. Inf. Technol. Biomed., 7(3), 153-162. DOI: 10.1109/TITB.2003.813793.[PubMed][Crossref]
  • Gonzalez, R. C., &Woods, R. E. (2002). Digital image processing (2nd ed.). Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc.
  • Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., & Witten, I. H. (2009). The WEKA data mining software: an update. SIGKDD Explor. Newsl., 11(1), 10-18. DOI: 10.1145/1656274.1656278.[Crossref]
  • Haralick, R., Shanmugam, K., & Dinstein, I. (1973). Textural features for image classification. IEEE Trans. Syst. Man Cybern., SMC-3(6), 610-621. DOI: 10.1109/TSMC.1973.4309314.[Crossref]
  • Horng, M.-H., Sun, Y.-N., & Lin, X.-Z. (1996). Texture feature coding method for classification of liver sonography. In B. Buxton & R. Cipolla (Eds.), Computer Vision - ECCV’96 (Vol. 1064, pp. 209-218 Part I). Springer Berlin Heidelberg. DOI: 10.1007/BFb0015537. [Crossref]
  • Husain, S., & Shigeru, E. (2000). Use of neural networks for feature based recognition of liver region on CT images. In Neural Networks for Signal Processing X, 2000. Proceedings of the 2000 IEEE Signal Processing Society Workshop, 11-13 December 2000. (Vol. 2, pp. 831-840). New York, USA: The IEEE, Inc. DOI: 10.1109/NNSP.2000.890163.
  • Jemal, A., Bray, F., Center, M. M., Ferlay, J., Ward, E., & Forman, D. (2011). Global cancer statistics. CA: A Cancer J. Clin., 61(2), 69-90. DOI: 10.3322/ caac.20107.[Crossref]
  • Lambrou, T., Linney, A. D., & Todd-Pokropek, A. (2006). Wavelet transform analysis and classification of the liver from computed tomography datasets. In Proceedings of the 6th International IEEE EMBS Special Topic Conference. 26-28 October 2006. Retrieved July 31, 2013, from http://medlab.cs.uoi.gr/itab2006/proceedings/medicalimaging/107.pdf.
  • Laws, K. I. (1980). Textured image segmentation. Unpublished doctoral dissertation, University of Southern California, Los Angeles, California, USA.
  • Mala, K., Sadasivam, V., & Alagappan, S. (2006). Neural network based texture analysis of liver tumor from computed tomography images. Int. J. Biol. Life Sci., 2(1), 33-40. Retrieved July 31, 2013, from http://www.waset.org/journals/ijbls/v2/v2-1-5.pdf.
  • Mougiakakou, S., Valavanis, I., Mouravliansky, N., Nikita, K., & Nikita, K. (2009). Diagnosis: a telematics-enabled system for medical image archiving, management, and diagnosis assistance. IEEE Trans. Instrum. Meas., 58(7), 2113-2120. DOI: 10.1109/TIM.2009.2015538.[Crossref][WoS]
  • Quatrehomme, A.,Millet, I., Hoa, D., Subsol, G., & Puech,W. (2013). Assessing the classification of liver focal lesions by using multi-phase computer tomography scans. In H. Greenspan, H. Muller, & T. Syeda-Mahmood (Eds.), Medical Content-Based Retrieval for Clinical Decision Support MCBR-CDS 2012 (Vol. 7723, pp. 80-91). Springer Berlin Heidelberg. DOI: 10.1007/978-3-642-36678-9 8.[Crossref]
  • Quinlan, J. R. (1993). C4.5: Programs for machine learning. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.
  • Smutek, D., Shimizu, A., Tesar, L., Kobatake, H., Nawano, S., & Svacina, S. (2006). Automatic internal medicine diagnostics using statistical imaging methods. In 19th IEEE International Symposium on Computer-Based Medical Systems (CBMS’2006), 22-23 June 2006 (pp. 405-412). Los Alamitos, California, USA: The IEEE Computer Society Press. DOI: 10.1109/CBMS.2006.56.[Crossref]
  • Stoitsis, J., Valavanis, I., Mougiakakou, S. G., Golemati, S., Nikita, A., & Nikita, K. S. (2006). Computer aided diagnosis based on medical image processing and artificial intelligence methods. Nucl. Instrum. Methods Phys. Res., Sect. A, 569(2), 591-595. DOI: 10.1016/j.nima.2006.08.134. [Crossref]
  • Wang, L., Zhang, Z., Liu, J., Jiang, B., Duan, X., Xie, Q., Hu, D., Li, Z. (2009). Classification of hepatic tissues from CT images based on texture features and multiclass Support Vector Machines. In W. Yu, H. He, & N. Zhang (Eds.), Advances in Neural Networks ISNN 2009 (Vol. 5552, pp. 374-381 Part 2). Springer Berlin Heidelberg. DOI: 10.1007/978-3-642-01510-6 43.[Crossref]
  • Weszka, J. S., Dyer, C. R., & Rosenfeld, A. (1976). A comparative study of texture measures for terrain classification. IEEE Trans. Syst., Man Cybern., SMC-6(4), 269-285. DOI: 10.1109/TSMC.1976.5408777.[Crossref]
  • Ye, J., Sun, Y., Wang, S., Gu, L., Qian, L., & Xu, J. (2009). Multiphase CT image based hepatic lesion diagnosis by SVM. In 2nd International Conference on Biomedical Engineering and Informatics (BMEI’2009), 17-19 October 2009 (pp. 1-5). New York, USA: The IEEE, Inc. DOI: 10.1109/BMEI.2009.5304774. [Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.doi-10_2478_slgr-2013-0039
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.