PL EN


2014 | 37 | 1 | 107-123
Article title

Decision Support System for Blockage Management in Fire Service

Title variants
Languages of publication
EN
Abstracts
EN
In this article we present the foundations of a decision support system for blockage management in Fire Service. Blockage refers to the situation when all fire units are out and a new incident occurs. The approach is based on two phases: off-line data preparation and online blockage estimation. The off-line phase consists of methods from data mining and natural language processing and results in semantically coherent information granules. The online phase is about building the probabilistic models that estimate the block-age probability based on these granules. Finally, the selected classifier judges whether a blockage can occur and whether the resources from neighbour fire stations should be asked for assistance.
Publisher
Year
Volume
37
Issue
1
Pages
107-123
Physical description
Dates
online
2014-08-08
Contributors
author
References
  • Abacus (2001). Ewidencja zdarzeń – EWID99. Technical report, Abacus, http://www.ewid.pl/?set=rozw_ewid&gr=roz. [23.04.2007].
  • Administration, U. S. F. (2002). National Fire Incident Reporting System. Quick reference guide. Technical report, National Fire Data Center.
  • Beckmann, P. (1968). An introduction to elementary queuing theory and telephone traffic’. The Golem Press, Boulder, Colo.
  • Caliński, T. and Harabasz, J. (1974). A dendrite method for cluster analysis. Communications in Statistics-Theory and Methods, 3(1):1–27.[WoS][Crossref]
  • Church, R., Sorensen, P., and Corrigan, W. (2001). Manpower deployment in emergency services. Fire technology, 37(3):219–234.[Crossref]
  • Clover, F. (1990). Tabu search – part 1. ORSA Journal on Computing, 1(2):190–206.
  • Clover, F. (1990). Tabu search – part 2. ORSA Journal on Computing, 2(1):4–32.
  • Deerwester, S., Dumais, S., Furnas, G., Landauer, T., and Harshman, R. (1990). Indexing by latent semantic analysis. Journal of the American society for information science, 41(6):391–407.[WoS]
  • Department, I. T. (2008). Incident Management Systems (IMS). User Guide. Technical report, London Fire Brigade.
  • Fink, A. and Reiners, T. (2006). Modeling and solving the short-term car rental logistics problem. Transportation Research Part E: Logistics and Transportation Review, 42(4):272–292.[Crossref]
  • Hasofer, A., Beck, V., and Bennetts, I. (2007). Risk analysis in building fire safety engineering. Butterworth-Heinemann.
  • Jones, K. (1993). A statistical interpretation of term specificity and its application in retrieval. Journal of documentation, 28(1):11–21.
  • Kaufman, L., Rousseeuw, P., and Corporation, E. (1990). Finding groups in data: an introduction to cluster analysis, volume 39. Wiley Online Library.
  • Krasuski, A., Kreński, K., and Łazowy, S. (2012). A Method for Estimating the Efficiency of Commanding in the State Fire Service of Poland. Fire Technology, 48(4):795–805.[WoS][Crossref]
  • Krasuski, A., Ślęzak, D., Kreński, K., and Łazowy, S. (2013). Granular Knowledge Discovery Framework. New Trends in Databases and Information Systems, 185:109–118.
  • Landauer, T., Foltz, P., and Laham, D. (1998). An introduction to latent semantic analysis. Discourse processes, 25(2):259–284.[Crossref]
  • Lau, H., Ho, G., Zhao, Y., and Hon, W. (2010). Optimizing patrol force deployment using a genetic algorithm. Expert Systems With Applications, 37(12):8148–8154.
  • Lee, S., Franz, L., and Wynne, A. (1979). Optimizing state patrol manpower allocation. Journal of the Operational Research Society, pages 885–896.
  • Li, Z. and Tao, F. (2010). On determining optimal fleet size and vehicle transfer policy for a car rental company. Computers & operations research, 37(2):341–350.
  • Morfologik, P. (2013). Morfologik – About the project. http://morfologik.blogspot.com/2006/05/about-project.html.
  • Nemhauser, G. and Wolsey, L. (1988). Integer and combinatorial optimization, volume 18. Wiley New York.
  • Ormeci, E. and Burnetas, A. (2004). Admission control with batch arrivals. Operations Research Letters, 32(5):448–454.[WoS][Crossref]
  • Peace, D. M. S. (2001). Planning new standards of fire service emergency cover for the United Kingdom. Fire technology, 37(3):279–290.[Crossref]
  • Rahikainen, J. and Keski-Rahkonen, O. (2004). Statistical determination of ignition frequency of structural fires in different premises in Finland. Fire technology, 40(4):335–353.[Crossref]
  • Rousseeuw, P. (1987). Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. Journal of computational and applied mathematics, 20:53–65.
  • Shonick, W. and Jackson, J. (1973). An improved stochastic model for occupancy-related random variables in general-acute hospitals. Operations Research, pages 952–965.
  • Taylor, P. and Huxley, S. (1989). A break from tradition for the San Francisco police: Patrol officer scheduling using an optimization-based decision support system. Interfaces, pages 4–24.
  • Tillander, K. and Keski-Rahkonen, O. (2008). The influence of fire department intervention to the fire safety of a building assessed using fire risk analysis. In Proceedings of the 3rd International Conference on Performance-Based Codes and Fire Safety Design Methods, pages 247–256.
  • Van der Laan, M., Pollard, K., and Bryan, J. (2003). A new partitioning around medoids algorithm. Journal of Statistical Computation and Simulation, 73(8):575–584.
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.doi-10_2478_slgr-2014-0020
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.