Full-text resources of CEJSH and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


2011 | 53 | 2 | 83-100

Article title

Remarks on Intended Models of Mathematical Theories

Selected contents from this journal

Title variants

Languages of publication



This note is a summary of the talk given on June 10, 2010 at the University of Opole during a meeting of The Group of Logic, Language and Information. We limit ourselves to some major points of the talk, skipping all the minor details. The main hero of this note is the notion of the intended model of a theory. Some emphasis is put on the role of extremal axioms in the characterization of such models. The notion of the intended model seems to be of some interest for linguists, too. This is one of the reasons for which this paper is published in a linguistic journal.








Physical description




  • Department of Applied Logic, Adam Mickiewicz University, Poznań, Poland


  • Baer Reinhold. 1928. "Über ein Vollständigkeitsaxiom in der Mengenlehre." Mathematische Zeitschrift 27, 536-539.[Crossref]
  • Bagaria Joan. 2005. "Natural Axioms of Set Theory and the Continuum Problem." In: Hájek et al. 2005: 43-64.
  • Barwise Jon. 1985. "Model-Theoretic Logics: Background and Aims." In: Barwise & Feferman 1985: 3-23.
  • Barwise Jon, Feferman Solomon (eds.). 1985. Model-Theoretic Logics. New York-Berlin-Heidelberg-Tokyo: Springer-Verlag.
  • Benaceraff Paul, Putnam Hilary (eds.). 1964. Philosophy of Mathematics. Selected Readings. Englewood Cliffs, New Jersey: Prentice-Hall, Inc.
  • Błaszczyk Piotr. 2007. Analiza filozoficzna rozprawy Richarda Dedekinda "Stetigkeit und irrationale Zahlen". Kraków: Wydawnictwo Naukowe Akademii Pedagogicznej.
  • Borsuk Karol, Szmielew Wanda. 1975. Podstawy geometrii. Warszawa: PWN.
  • Carnap Rudolf, Bachmann Friedrich. 1936. "Über Extremalaxiome." Erkenntnis 6, 166-188.[Crossref]
  • Carnap Rudolf, Bachmann Friedrich. 1981. "On Extremal Axioms." [English translation of Carnap & Bachmann 1936, by H. G. Bohnert]. History and Philosophy of Logic 2, 67-85.
  • Cohen Paul. 1966. Set Theory and the Continuum Hypothesis. New York: W. A. Benjamin, Inc.
  • Enayat Ali, Kossak Roman (eds.). 2004. Nonstandard Models in Arithmetic and Set Theory. AMS Special Session Nonstandard Models of Arithmetic and Set Theory, January 15-16, 2003, Baltimore, Maryland, Contemporary Mathematics 361. Providence, Rhode Island: American Mathematical Society.
  • Feferman Solomon, Friedman Harvey M., Maddy Penelope, Steel John R. 2000. "Does Mathematics Need New Axioms?" The Bulletin of Symbolic Logic 6, 4, 401-446.[Crossref]
  • Fraenkel Abraham A. 1928. Einleitung in die Mengenlehre. Berlin: Verlag von Julius Springer.
  • Fraenkel Abraham A., Bar-Hillel Yehoshua, Levy Azriel. 1973. Foundations of Set Theory. Amsterdam-London: North-Holland Publishing Company.
  • Gaifman Haim. 2004. "Nonstandard Models in a Broader Perspective." In: Enayat & Kossak 2004: 1-22.
  • Gödel Kurt. 1940. "The Consistency of the Axiom of Choice and of the Generalized Continuum Hypothesis with the Axioms of Set Theory." Annals of Mathematics Studies 3, 1-69.
  • Gödel Kurt. 1964. "What is Cantor's Continuum Problem?" In: Benaceraff & Putnam 1964: 258-273.
  • Grobler Adam. 2006. Metodologia nauk. Kraków: Wydawnictwo Aureus i Wydawnictwo Znak.
  • Hájek Petr, Pudlák Pavel. 1993. Metamathematics of First-Order Arithmetic. Berlin: Springer-Verlag.
  • Hájek Petr, Villanueva Luis V., Westerståhl Dag. (eds.) 2005. Proceedings of the 12th International Congress of Logic, Methodology and Philosophy of Science. London: Kings College Publications.
  • Hilbert David. 199914. Grundlagen der Geometrie. Stuttgart-Leipzig: B. G. Teubner.
  • Hintikka Jaakko. 1986. "Extremality Assumptions in the Foundations of Mathematics." Philosophy of Science Association 2, 247-252.
  • Hintikka Jaakko. 1991. "Carnap, the Universality of Language and Extremality Axioms." Erkenntnis 35, 325-336.
  • Kanamori Akihiro. 1994. The Higher Infinite. Large Cardinals in Set Theory from Their Beginnings. Berlin: Springer-Verlag.
  • Kaye Richard. 1991. Models of Peano Arithmetic. Oxford: Clarendon Press.
  • Koellner Peter. 2010. Independence and Large Cardinals. Stanford Encyklopedia of Philosophy
  • Mostowski Andrzej. 1967. "O niektórych nowych wynikach meta-matematycznych dotyczących teorii mnogości." Studia Logica 20, 99-116.[Crossref]
  • Myhill John. 1952. "The Hypothesis that all Classes are Nameable." Proc. Nat. Acad. Sci. USA 38, 979.[Crossref]
  • Nowaczyk Adam. 1990. Wprowadzenie do logiki nauk ścisłych. Warszawa: PWN.
  • Przełęcki Marian. 1988. Logika teorii empirycznych. Warszawa: PWN.
  • Putnam Hilary. 1980. "Models and Reality." The Journal of Symbolic Logic 45, 464-482.[Crossref]
  • Shepherdson John C. 1951-1953. "Inner Models for Set Theory." Journal of Symbolic Logic 16 (1951), 161-190; 17 (1952), 225-237; 18 (1953), 145-167.[WoS]
  • Suszko Roman. 1951. "Canonic Axiomatic Systems." Studia Philosophica 4, 301-330.
  • Tennant Neil. 2000. "Deductive versus Expressive Power: a Pre-Gödelian Predicament." Journal of Philosophy 97, 257-277.[Crossref]
  • Wang Hao. 1974. From Mathematics to Philosophy. London: Routledge and Kegan Paul.
  • Wang Hao. 1996. A Logical Journey: From Gödel to Philosophy. Cambridge, Mass.: MIT Press.
  • Woleński Jan. 1993. Metamatematyka a epistemologia. Warszawa: Wydawnictwo Naukowe PWN.
  • Woleński Jan. 2005. Epistemologia. Warszawa: Wydawnictwo Naukowe PWN.
  • Wójcicki Ryszard. 1974. Metodologia formalna nauk empirycznych. Wrocław-Warszawa-Kraków-Gdańsk: Ossolineum.
  • Zermelo Ernst. 1930. "Über Grenzzahlen und Mengenbereiche: Neue Untersuchungen über die Grundlagen der Mengenlehre." Fundamenta Mathematicae 16, 29-47.

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.