PL EN


2010 | 2 | 1 | 55-70
Article title

The Expert Knowledge Collection Methodology in the Decision Support System

Title variants
Languages of publication
EN
Abstracts
EN
The purpose of this article is to present and analyse issues connected with the expert knowledge collection methodology in the decision support systems (DSS). The considerations concentrate on a conception of building an information system, based on an application of case-based reasoning method and reasoning based on approximate knowledge. The expert's knowledge is systematically collected in a case base. A mechanism of classical CBR and a logic model of the case base were described. It was assumed that the cases compared with regard to similarity are elements of tolerance space what considerably accelerates the retrieval of satisfying solutions. A local and global measure of case similarity is developed. The method can be used in complex tasks of image identification.
Publisher
Year
Volume
2
Issue
1
Pages
55-70
Physical description
Dates
published
2010-01-01
online
2012-03-20
Contributors
  • Faculty of Management, Warsaw University of Technology, 02-524 Warszawa, Poland
author
  • Faculty of Management, Warsaw University of Technology, 02-524 Warszawa, Poland
References
  • Aamodt A., Plaza P. - Case-Based Reasoning: Foundational Issues, Methodological Variation and System Approaches [in] Artificial Intelligence Communications, No. 7 (1), 1994, pp. 39-59.
  • Althoff K. D., Auriol E., Barletta R., Manago M. - A Review of Industrial Case-Based Reasoning Tools [in] An AI Perspectives Report (ed. A. Goodall). Oxford 1995, pp. 25-39.
  • Bergmann R., Kolodner J., Plaza E. - Representation in case-based reasoning [in] Knowledge Engineering Review, No. 20 (3), Cambridge University Press, UK 2005, pp. 209-213.
  • Case-Based Reasoning.
  • Doherty P., Łukaszewicz W., Szałas A. - Tolerance Spaces and Approximative Representational Structures [at] Proceedings of the 26th German Conference on Artificial Intelligence KI'2003, LNAI 2821, Springer-Verlag 2003, pp. 475-489.
  • Leake D. - CBR in Context: The Present and Future [in] Case-Based Reasoning: Experiences, Lessons and Future Directions (ed. D. Leake). AAAI Press/MITTPress 1996, pp. 3-30.
  • Marir F., Watson I. D. - Case-Based Reasoning: A Review [in] Case-Based Reasoning: A Categorised Bibliography (ed. F. Marir, I. D. Watson). The Knowledge Engineering Review, Vol. 9, No. 4, 1994, pp. 355-381.
  • Michalczyk A. - Miary podobieństwa w hierarchicznym grupowaniu elementów przestrzeni tolerancji [in] Informatyka w globalnym świecie (ed. J. Kisielnicki). PJWSTK, Warszawa 2006, pp. 357-363.
  • Michalczyk A. - Model systemu informatycznego wspierającego zarządzanie wiedzą i doświadczeniem w firmach windykacyjnych. Praca doktorska, University of Warsaw, Faculty of Management, Warszawa 2007.
  • Mulawka J. - Systemy ekspertowe. WNT, Warszawa 1997.
  • Rutkowski L. - Metody i techniki sztucznej inteligencji. PWN, Warszawa 2006.
  • Sun Z., Finnie G. - Experience Management in Knowledge Management [in] Proceedings of the Knowledge-Based Intelligent Information and Engineering Systems. 9th International Conference (KES2005) (ed. R. Khosla, R. J. Howlett, L. C. Jain). Melbourne 2005, pp. 979-986.
  • Watson I., Marir F. - Case-Based Reasoning: A Review [in] The Knowledge Engineering Review, Vol. 9, No. 4, 1994, pp. 327-354.[WoS]
  • Waściński T., Michalczyk A. - Koncepcja systemu IT wspomagającego zarządzanie wiedzą i doświadczeniem [in] Zarządzanie wiedzą i technologiami informatycznymi (ed. C. Orłowski, Z. Kowalczuk, E. Szczerbicki). PWNT, Gdańsk 2008, pp. 167-174.
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.doi-10_2478_v10238-012-0021-z
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.