2015 | 8 | 25-48
Article title

Prognozowanie wypłat z bankomatów

Title variants
Forecasting Withdrawals from ATMs
Languages of publication
Celem artykułu jest porównanie jakości prognoz zarówno ex post, jak i ex ante dotyczących zapotrzebowania na gotówkę w bankomatach, przy wykorzystaniu różnych metod prognozowania na podstawie szeregów czasowych wypłat. (fragment tekstu)
The authors explain links between strategy of replenishment of ATMs and costs of ATMs holders. Cost minimalization depends on accuracy of forecasts of withdrawals from ATMs. In the paper the several forecasting methods of withdrawals from ATMs in Euronet network installed in Małopolskie and Podkarpackie voivodships are applied. The used forecasting models are compared based on quality of ex post and ex ante forecasts. The model used in forecasting process depends on many factors e.g. location of ATM or calendar effects. The importance and role of these factors are analyzed in the paper. The authors supplied evidence, that suggested forecasts based on weighted averages are more accurate than forecasts based on methods applied by other authors. (original abstract)
Physical description
  • Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie
  • Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie
  • Adams A. S., Thiehen K. A. (1991), Automatic teller machines and the older population, Applied Ergonomics", Vol. 22
  • Amromin E., Chakravorti S. (2007), Debit card and cash usage: a cross-country analysis, Technical report, Federal Reserve Bank of Chicago
  • Aydin I., Karakose M., Akin E. (2009), The Prediction Algorithm Based on Fuzzy Logic Using Time Series Data Mining Method, "World Academy of Science, Engineering and Technology", Vol. 51
  • Boeschoten W. C. (1998), Cash management, payment patterns and the demand for money, "De Economist", Vol. 146
  • Brentnall A. R., Crowder M. J., Hand D. J. (2008), A statistical model for the temporal pattern of individual automated teller machine withdrawals, Appl. Statist", Vol. 57 (1)
  • Brentnall A. R., Crowder M. J., Hand D. J. (2010), Predicting the amount individuals withdraw at cash machines using a random effects multinomial model, "Statistical Modelling", Vol. 10 (2)
  • Cleveland W. S., Devlin S. J. (1980), Calendar Effects in Monthly Time Series: Detection by Spectrum Analysis and Graphical Methods, "Journal of the American Statistical Association", Vol. 371 (75)
  • Findley D. F., Monsell B. C. (2009), Modeling Stock Trading Day Effects Under Flow Day-of-WeekEffect Constraints, "Journal of Official Statistics", Vol. 25 (3)
  • Findley D. F., Monsell B. C., Bell W. R., Otto M. C., Chen B. C. (1998), New Capabilities and Methods of the X-12-ARIMA Seasonal Adjustment Program, "Journal of Business and Economic Statistics", Vol. 16 (2)
  • Findley D. F., Soukup R. J. (1999), On the Spectrum Diagnostics Used by X- 12-ARIMA to Indicate the Presence of Trading Day Effects after Modeling or Adjustment, Proceedings of the American Statistical Association, Business and Statistics Section
  • Findley D. F., Soukup R. J. (2000), Modeling and Model Selection for Moving Holidays, Proceedings of the American Statistical Association, Business and Economics Statistics Section Findley D. F.,
  • Soukup R. J. (2001), Detection and Modeling of Trading Day Effects, in ICES II: Proceedings of the Second International Conference on Economic Surveys
  • Gill J. M. (1996), Making cash dispensers easier to use, (accessed 8 April 2005)
  • Grubbs F. E. (1950), Sample criteria for testing outlying observations, "The Annals of Mathematical Statistics", No. 21 (1) (10.1214/aoms/1177729885)
  • Gurgul H., Suder M. (2012), Efekt kalendarza wypłat z bankomatów sieci Euronet, "Zeszyty Naukowe Wyższej Szkoły Ekonomii i Informatyki w Krakowie", nr 8
  • Gurgul H., Suder M. (2013a), Modeling of Withdrawals from Selected ATMs of the "Euronet"Network, "Managerial Economics", Vol. 13
  • Gurgul H., Suder M. (2013b), The properties of ATMs development stages - an empirical analysis, "Statistic in Transition", Vol. 3
  • Gurgul H., Suder M. (2013c), Rozkład prawdopodobieństwa dziennych wypłat z bankomatów, "Wiadomości Statystyczne", nr 4
  • Hand D. J., Blunt G. (2001), Prospecting for gems in credit card data, IMA, "Journal of Management Mathematics", Vol. 12
  • Hastie T., Tibshirani R., Friedman J. H. (2001), The elements of statistical learning: Data mining, inference, and prediction, New York: Springer
  • Hatta K., Iiyama Y. (1991), Ergonomic study of automatic teller machine operability, "International Journal of Human-Computer Interaction", Vol. 3
  • Johnson G. I., Coventry L. (2001), You talking to me? Exploring voice in self-service user interfaces, "International Journal of Human- Computer Interaction", Vol. 13 (2)
  • Kumar P., Walia E. (2006), Cash Forecasting: An Introduction of Artificial Neural Networks in Finance, "International Journal of Computer Sciences and Applications", Vol. 3
  • Liu L. M. (1980), Analysis of Time Series with Calendar Effects, "Management Science", Vol. 26
  • McElroy T. S., Holland S. (2005), A Nonparametric Test for Assessing Spectral Peaks, Research Report 2005-10, "Statistical Research Division", U. S. Bureau of the Census, Washington D. C.
  • Mester L. (2009), Changes in the use of electronic means of payment: 1995-2007, "Business Review", No. Q3
  • Rogers W., Gilbert D. K., Cabrera E. F. (1997), An analysis of automatic teller machine usage by older adults: A structured interview approach, "Applied Ergonomics", Vol. 28
  • Simutis R., Dilijonas D., Bastina L. (2008), Cash demand forecasting for ATM using Neural Networks and support vector regression algorithms, 20th International Conference, EURO Mini Conference, "Continuous Optimization and Knowledge-Based Technologies", EurOPT-2008, Selected Papers, Vilnius, May 20-23
  • Simutis R., Dilijonas D., Bastina L., Friman J., Drobinov P. (2007), Optimization of Cash Management for ATM Network, "Information Technology and Control", Vol. 36 (1A)
  • Snellman H., Viren M. (2009), ATM networks and cash usage, Applied Financial Economics", Vol. 19 (10)
  • Tadeusiewicz R. (1993), Sieci neuronowe, Akademicka Oficyna Wydawnicza, Warszawa
  • Teddy S. D., Ng S. K. (2011), Forecasting ATM Cash Demands Using a Local Learning Model of Cerebellar Associative Memory Network, "International Journal of Forecasting", Vol. 27
  • Thatcher A., Shaik F., Zimmerman C. (2005), Attitudes of semiliterate and literate bank account holders to the use of automatic teller machines, "International Journal of Industrial Ergonomics", Vol. 35 (2)
  • Van der Heiden G. C. (1990), Thirty-something million: Should they be exceptions?, "Human Factors", Vol. 32 (4)
  • Venkatesha K., Ravia V., Prinzieb A., Van den Poelb D. (2014), Cash demand forecasting in ATMs by clustering and neural networks, "European Journal of Operational Research", Vol. 232
  • Zeliaś A., Pawełek B., Wanat S. (2013), Prognozowanie ekonomiczne, Wydawnictwo Naukowe PWN, Warszawa.
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.