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OPTIMALITY OF SPRING BALANCE
WEIGHING DESIGNS

Abstract. In this paper, the problem of existence of optimal spring balance weighing designs
is discussed. Two optimality criterions are compared and the appropriate optimality conditions are
presented.
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I. INTRODUCTION

We consider the model of spring balance weighing design
E(y)=Xw, Cov(e)=0c’G, (1)

where y is an nx1 random vector of the observations. Each observation meas-
ures the sum of the measurements of objects taken to the combination.
Xed, , (O, 1), D, (O, 1) denotes the class of nx¢ matrices X = (xi]- ),
i=12,...,n, j=12,..,¢t, having entries x; = 1 or0, w= (Wsza---,W;) isa
vector representing true measurements of objects and e is the nx1 random
vector of errors, E(e) =0,, E(ee'): 0’G, where G is positive definite known

matrix. If the designs matrix X is of full column rank, then all w; are estimable

. . . . . . . Vo — -1
and the variance matrix of their best linear unbiased estimator is o (X G 1X)

In the theory of optimal designs, very important role plays the matrix G . It
describe the relations between measurement errors. Each form of that matrix
requires specific investigations.
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II. OPTIMALITY CRITERIA

Kiefer (1974) considered the ¢, (for p > 0) optimality criteria in the form

det(Q)" for p=0
- , 2
i {tr(ﬂ_l) for p=1 ®

where Q = X'X. The D-, A- criteria of optimality are the same as @, and @,
respectively. Minimizing @, is equivalent to maximizing Pukelsheim’s ¢_,
(see Pukelsheim (1993)), which is also defined for —1< p < 0. Here, we gener-

alize the optimum criterion given by Kiefer (1974). For positive definite matrix
G of known elements, the information matrix for estimating w is

Q. = X G 'X. Thus
3 det(Q)" for p=0
s tr(QG )_1 for p=1
Definition 2.1. Any nonsingular spring balance weighing design
Xed, , (0, 1) with the variance matrix of errors o°G is said to be

and we have the following definition.

i) A-optimal if and only if tr(QG )_l is minimal,
ii) D-optimal if and only if det(Q )" is minimal.

ITI. THE DESIGN MATRIX

In Jacroux and Notz (1983) the optimal designs are presented.
Theorem 3.1. Let ¢ be odd and let the condition

XX = %(1[ +1,1)) 4)

be satisfied. Thus X e ®, (O, 1) is A-optimal and D-optimal.
It is worth pointing out that in the class X e ® (O, l) for a given »n and ¢,

the number 7(¢ + 1)(4t)_1 must be integer. This requirement is very restricted as
we are not able to construct optimal design for any 7 and fand it is needed to
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select an optimal weighing design. Accordingly, let ¥, ), (0, 1) denotes the

class of matrices of spring balance weighing designs in that (4) is true, i.e. for
any X, € ¥, (0, l) the condition

X X, :%(I, +11)) 5)

is satisfied.
Special attention in this paper is given to the determining optimal design in
the class Xe® (O, 1), in that optimal design satisfying conditions given by

Jacroux and Notz (1983) doesn’t exist. Because of this the motivation of this
paper is to consider the situation in that the measurements are taken in two dif-

ferent conditions or on two different installations, », measurements are taken

with variance o~ and one, additionally measurement in other conditions with
. -1 __2
variance g o~ . Thus

G Inl 0)11 6
- O'nl g—l : ()

According to (6), we consider X e ®,, (0, 1) in the form

X=| ] (7
X

where X, € ¥, (0, 1) satisfies (5), X is #x1 vector of elements equal to 1

or 0. The form (7) could be interpreted as construction the design matrix X in
the class @, , (O, 1) based on matrix X, from the class ‘I’(n_l)xt (0, 1), which is

A- and D-optimal. In the other words, the problem is how to add to n, meas-

urements one additionally measurement to become optimal design. Theorems
given by Katulska and Przybyt (2007) and Graczyk (2011) will be required to
prove the main result of this paper.
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, t+1
Theorem 3.1. Katulska and Przybyt (2007). Let ¢ be odd. If x 1, 27

then any nonsingular spring balance weighing design Xe®, , (O, 1) in the

form (7) with the variance matrix of errors oG in (6) is regular D-optimal.
Theorem 3.2. Graczyk (2011). Let ¢ be odd. The design X e ®,, (O, l) in

the form (7) with the variance matrix of errors o’G in (6) is A-optimal if
! t+1
i) forfixed g, ge(0,R),if x1, ==
. o t+1
ii) for fixed g, g G(LS,PS), ifx1, :T_S ,

iii) for fixed g, ge[Lp_l,ooj,if x1, =1,

| t—1 , t+1
iv) for fixed g =P,,if x 1, =7—S or x1, :T—s,

n-l_ _(p+1)2p(s—1)+4s-3)n-1)

here P, =
Where p(p—l) p(p—2s+1)(p+2s+1)
P - (p+1)(2ps+4s+l)(n—l), s=1,2,...,p—_3.

‘ p(p—25—1)(p—2s+1) 2

Theorem 3.3. Let Xe® (0, 1) be nonsingular spring balance weighing

design in the form (7) for that the condition (5) is satisfied.

i) If ge(O,H)) and x1, :t—;l, then Xe(I)m(O, 1) is A- and D-

optimal.
i) If ge (L P ) and moreover if

' t+1
a. x1,= T—S then Xe® (O, 1) is A-optimal,

' 1
b. x1, = % then Xe®,, (0, 1) is D-optimal.

t

i) If ge [L ool oo] and moreover if
2

a. let =1 then Xe®, (0, 1) is A-optimal,
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b. Xylt = % then Xe®, , (O, 1) is D-optimal.

iv) If g = P, and moreover

| 1—1 , t+1
a. x1, :T_S or x 1, :T_S then Xe(I)M(O, 1) is A-optimal,

b. xvlt :% then Xe®, , (0, l) is D-optimal.

Proof. For positive definite matrix G in (6) of known elements, let us con-
sider the design X, € ¥, ), (O, 1) which satisfies Condition (5), i.e. X is A-
and D-optimal. Based on that design, we form Xe®,, (0, 1) in (7). According

to optimality criterion we consider €. . We have
Q. =XG'X=XX, +gxx . (8)

The proof falls naturally into two parts. First we determine D-optimal de-
sign. We count det(QG )_1 . Katulska and Przybyt (2007) showed that

det(Q )< (¢ + 1)(1 T j((t 1 _1)]t. )

4

and, moreover they showed that maximum of (9), i.e. minimum of det(QG )_l is
, t+1 | t+1
attained if and only if x 1, = - Thus if x1, = - then Xe® (O, l) is

D-optimal. Next we check if in @, , (0, 1) exists A-optimal design. Thus we

count tr(QG )71 and we determine X for which minimum of tr(QG )71 is at-
tained. From Graczyk (2011) we have, if g € (0, Po) then

AP (n-1+g(e-1))
B TR s

(10)

and if g = F, then
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G A-1)
tr(Qg ) 2—(t+1)(n_1). (11)
If ge (Ls, Ps) then
_ 4¢3 4%g(t—25+1)
tr(Qg)" = - M., 12
P T R A TR (2
where M = 5 t(t+l)+2s(t+2) and if g = P, then
(t+17(n—1)+1g(t—2s +1)t - 25 +3)
o At(2s +1)— (45 +1))
tr(Qg )" = . 13
) (t+12(n—1)2s +1) (49
Ifge[Lp_l,ooJ then
2
(@) > 4t2(t(t+1)2(n—1)+ 4g(t—1)2). 14)
(t+1y(n-1)2s+1)

' t+1
For ge (0, PO), minimum of (10) is attained if and only if x1, =——.

' t+1
Hence if x 1, = T_S then Xe® , (O, 1) is A-optimal. If g = F, then the

. t+1 , -1
equality in (11) is fulfilled if x 1, :T or x1, :T. For ge(LS,PS)
, -1
minimum of (12) is attained if and only if x1, :7. If g=P, then the
, t+1 ' t—1
equality in (13) is true if x1, =7—s or x1, ZT—S. In this case

' 1
Xed, , (0, 1) is A-optimal. We have, if x 1, = i—s then Xe® (0, 1)
2
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- t+1
is A-optimal. If g = P, then the equality in (13) is true if x 1, :T_S or
| -1
x1, :T—S. In this case Xe®, , (0, 1) is A-optimal. Finally, if

ge (L PR OOJ then minimum of (14) is attained if and only if x1 , =1.Thusif

x1,=1then Xe®, (O, 1) is A-optimal. Hence the theorem.
Now, we form the design matrix X, € ¥(,_;), (O, 1) based on the incidence
matrix of balanced incomplete block design with the parameters v, b, r, k, A,

see Raghavarao and Padgett (2005), as X, = N'.

Lemma 3.1. If N is the incidence matrix of balanced incomplete block de-
sign with the parameters

Hv=4g+1, b=2(4g+1), r=2(2g+1), k=2q+1, A=2q+1 or

2) v=4q-1,b=4qg-1,r=2q, k=29, A=q,qg=12,...

then for X, = N’ the condition (5) is fulfilled.

The proof is left for the reader.

From now on, we consider X, =N ' , where N is the incidence matrix of

balanced incomplete block design with the parameters given in Lemma 3.1. The
parameter connected with precision of measurements g is given. The values of

g determining respectively intervals are the same as in Theorem 3.2. Thus in
next corollaries, according to the value of g we give the conditions determining
optimal design X in the class @, (O, 1).
, t+1
Corollary 3.1. If g € (O, PO) andif x 1, = - then X e @), (O, 1) in

the form (7) with the variance matrix of errors 6°G in (6) is A- and D-optimal.
Corollary 3.2.If g € (LS , R) and moreover if

i)xllt = t—;l —s then X e (D(b+1)xt (O, 1) in the form (7) with the variance

matrix of errors 0°G in (6) is A-optimal,

, t+1
ix1, = - then X € (I)(b nw (O, l) in the form (7) with the variance ma-

trix of errors o°G in (6) is D-optimal.
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Corollary 3.3.If g € [L PR ooj and moreover if

i)Xllt =1 then X e (I)(b it (0, l) in the form (7) with the variance matrix
of errors oG in (6) is A-optimal,

, t+1
iif x1, = - then Xe®,. ), (O, 1) in the form (7) with the variance

matrix of errors 0°G in (6) is D-optimal.
Corollary 3.3. If g = P, and moreover

: t-1 ' t+1
px1, ZT—S or x 1, ZT_S then X € q)(bﬂ)xt(o, 1) in the form (7)
with the variance matrix of errors o°G in (6) is A-optimal,
' t+1
ix1, = - then X € (I)(b nw (O, l) in the form (7) with the variance ma-

trix of errors 0°G in (6) is D-optimal.

IV. EXAMPLE

Let us consider experiment in that using 7 =11 measurements we determine
unknown weights of # =5 objects. For the construction of design matrix we use
the incidence matrix N of balanced incomplete block design with the parame-
ters v=5,b=10,r=6, k=3, A =3 givenas

0000 T1TT1TT1T1T1:1
011 100O0T1T1°1

N=/1 01 1 0 1 1 O O 1|.Thusif ge(o,l) then X,
1101101010 2
11101 1 01 0 0]

1 45
is A- and D-optimal, if g 6(5,7j then X, is D-optimal and X; is A-
. . 45 . . . .
optimal, if g e 7, + 00 | then X, is D-optimal and X, is A-optimal, more-

1
over if g ZE then X, is A- and D-optimal and X, is A-optimal, finally if
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45
g 27 then X, is D-optimal and X;, X, are A-optimal, where

X,, X5, X, €D s (0, 1) are given in as

000O0T1T1T1T1T1F:1/1
01110001110
X,=[1 01101100 1 1|,
11011010101
1110110100 0]
[0 000 1 1 1 1 1 1 0]
01 110001110
X;=[1 01101100 1 1|,
11011010101
1110110100 0]
0000 1 1 1 111 0]
01 110001110
X,=/1 011011001 0|
11011010101
1110110100 0]
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Malgorzata Graczyk
OPTYMALNOSC W SPREZYNOWYCH UKEADACH WAGOWYCH
W pracy przedstawiono zagadnienie A- i D-optymalno$ci sprezynowego uktadu wagowego.

Rozwazania teoretyczne zostaly zobrazowane przyktadem konstrukcji macierzy uktadu w oparciu
o macierze incydencji uktadéw zréwnowazonych o blokach niekompletnych.





