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OPTIMALITY OF SPRING BALANCE  
WEIGHING DESIGNS 

 
 Abstract. In this paper, the problem of existence of optimal spring balance weighing designs 

is discussed. Two optimality criterions are compared and the appropriate optimality conditions are 

presented. 
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I. INTRODUCTION 
 
We consider the model of spring balance weighing design 
 

   Xwy E ,   Ge 2Cov  ,     (1) 

 
where y  is an 1n  random vector of the observations. Each observation meas-

ures the sum of the measurements of objects taken to the combination. 
 1,0tnΦX ,  1,0tnΦ  denotes the class of tn  matrices  ijxX , 

ni ,...,2,1 , tj ,...,2,1 , having entries 1ijx  or 0,   '
21 ,...,, twwww is a 

vector representing true measurements of objects and e  is the 1n  random 

vector of errors,   n0e E ,   Gee 2'E  , where G  is positive definite known 

matrix. If the designs matrix X  is of full column rank, then all jw  are estimable 

and the variance matrix of their best linear unbiased estimator is   11'2  XGX  

In the theory of optimal designs, very important role plays the matrix G . It 
describe the relations between measurement errors. Each form of that matrix 
requires specific investigations.  
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II. OPTIMALITY CRITERIA 
 
Kiefer (1974) considered the pφ  (for 0p ) optimality criteria in the form 
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where XXΩ ' . The D-, A- criteria of optimality are the same as 0φ  and 1φ , 

respectively. Minimizing pφ  is equivalent to maximizing Pukelsheim’s pφ  

(see Pukelsheim (1993)), which is also defined for 01  p . Here, we gener-

alize the optimum criterion given by Kiefer (1974). For positive definite matrix 
G  of known elements, the information matrix for estimating w  is 

XGXΩG
1'  . Thus  
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 and we have the following definition. 

Definition 2.1. Any nonsingular spring balance weighing design 

 1,0tnΦX  with the variance matrix of errors G2  is said to be 

i) A-optimal if and only if   1tr 
GΩ  is minimal, 

ii) D-optimal if and only if   1det 
GΩ  is minimal. 

 
 

III. THE DESIGN MATRIX 
 
In Jacroux and Notz (1983) the optimal designs are presented.  
Theorem 3.1. Let t  be odd and let the condition 
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be satisfied. Thus  1,0tnΦX  is A-optimal and D-optimal. 

It is worth pointing out that in the class  1,0tnΦX  for a given n  and t , 

the number    141  ttn  must be integer. This requirement is very restricted as 

we are not able to construct optimal design for any n  and t and it is needed to 
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select an optimal weighing design. Accordingly, let    1,01 tn Ψ  denotes the 

class of matrices of spring balance weighing designs in that (4) is true, i.e. for 
any    1,011 tn ΨX  the condition  
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is satisfied.  

Special attention in this paper is given to the determining optimal design in 
the class  1,0tnΦX , in that optimal design satisfying conditions given by 

Jacroux and Notz (1983) doesn’t exist. Because of this the motivation of this 
paper is to consider the situation in that the measurements are taken in two dif-
ferent conditions or on two different installations, 1n  measurements are taken 

with variance 2  and one, additionally measurement in other conditions with 

variance 21g . Thus 
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According to (6), we consider  1,0tnΦX  in the form 
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X
X ,     (7) 

 
where    1,011 tn ΨX  satisfies (5), x  is 1t  vector of elements equal to 1 

or 0. The form (7) could be interpreted as construction the design matrix X  in 
the class  1,0tnΦ  based on matrix 1X  from the class    1,01 tn Ψ , which is 

A- and D-optimal. In the other words, the problem is how to add to 1n  meas-

urements one additionally measurement to become optimal design. Theorems 
given by Katulska and Przybył (2007) and Graczyk (2011) will be required to 
prove the main result of this paper.  
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Theorem 3.1. Katulska and Przybył (2007). Let t  be odd. If 
2

1' 


t
t1x  

then any nonsingular spring balance weighing design  1,0tnΦX  in the 

form (7) with the variance matrix of errors G2  in (6) is regular D-optimal. 
Theorem 3.2. Graczyk (2011). Let t  be odd. The design  1,0tnΦX  in 

the form (7) with the variance matrix of errors G2  in (6) is A-optimal if 

i) for fixed g ,  0,0 Pg , if 
2
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ii) for fixed g ,  ss PLg , , if s
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Theorem 3.3. Let  1,0tnΦX  be nonsingular spring balance weighing 

design in the form (7) for that the condition (5) is satisfied.  

i) If  0,0 Pg  and 
2

1' 


t
t1x , then  1,0tnΦX  is A- and D-

optimal. 
ii) If  ss PLg ,  and moreover if  

a. s
t
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b. 
2
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t
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iii) If 
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a. 1' t1x  then  1,0tnΦX  is A-optimal,  
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b. 
2

1' 


t
t1x  then  1,0tnΦX  is D-optimal. 

iv) If sPg   and moreover 
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1'1x   then   1,0tnΦX  is A-optimal,  

b. 
2

1' 


t
t1x  then  1,0tnΦX  is D-optimal. 

Proof. For positive definite matrix G  in (6) of known elements, let us con-
sider the design    1,011 tn ΨX  which satisfies Condition (5), i.e. 1X  is A- 

and D-optimal. Based on that design, we form  1,0tnΦX  in (7). According 

to optimality criterion we consider GΩ . We have 
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The proof falls naturally into two parts. First we determine D-optimal de-

sign. We count   1det 
GΩ . Katulska and Przybył (2007) showed that 
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and, moreover they showed that maximum of (9), i.e. minimum of   1det 
GΩ  is 

attained if and only if 
2
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t1x . Thus if 
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t
t1x  then  1,0tnΦX  is 

D-optimal. Next we check if in  1,0tnΦ  exists A-optimal design. Thus we 

count   1tr 
GΩ  and we determine x  for which minimum of   1tr 

GΩ  is at-

tained. From Graczyk (2011) we have, if  0,0 Pg  then  
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For  0,0 Pg , minimum of (10) is attained if and only if 
2
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t
t1x . 

Hence if s
t
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1'1x  then  1,0tnΦX  is A-optimal. If 0Pg   then the 

equality in (11) is fulfilled if 
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 1,0tnΦX  is A-optimal. We have, if s
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is A-optimal. If sPg   then the equality in (13) is true if s
t

t 
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1'1x . In this case  1,0tnΦX  is A-optimal. Finally, if 
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2

1pLg  then minimum of (14) is attained if and only if 1' t1x . Thus if 

1' t1x  then  1,0tnΦX  is A-optimal. Hence the theorem.  

Now, we form the design matrix    1,011 tn ΨX  based on the incidence 

matrix of balanced incomplete block design with the parameters ,,,, krbv , 

see Raghavarao and Padgett (2005), as '
1 NX  .  

Lemma 3.1. If N  is the incidence matrix of balanced incomplete block de-
sign with the parameters  

1) 14  qv ,  142  qb ,  122  qr , 12  qk , 12  q  or  

2) 14  qv , 14  qb , qr 2 , qk 2 , q , ,...2,1q .  

then for '
1 NX   the condition (5) is fulfilled.  

The proof is left for the reader.  

From now on, we consider '
1 NX  , where N  is the incidence matrix of 

balanced incomplete block design with the parameters given in Lemma 3.1. The 
parameter connected with precision of measurements g  is given. The values of 

g  determining respectively intervals are the same as in Theorem 3.2. Thus in 

next corollaries, according to the value of g  we give the conditions determining 

optimal design X  in the class  1,0tnΦ . 

Corollary 3.1. If  0,0 Pg  and if 
2
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the form (7) with the variance matrix of errors G2  in (6) is A- and D-optimal. 
Corollary 3.2. If  ss PLg ,  and moreover if  
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t1x  then    1,01 tb ΦX  in the form (7) with the variance ma-

trix of errors G2  in (6) is D-optimal. 
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Corollary 3.3. If 
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t1x  then    1,01 tb ΦX  in the form (7) with the variance ma-

trix of errors G2  in (6) is D-optimal. 
 
 

IV. EXAMPLE 
 
Let us consider experiment in that using 11n  measurements we determine 

unknown weights of 5t  objects. For the construction of design matrix we use 
the incidence matrix N  of balanced incomplete block design with the parame-
ters 5v , 10b , 6r , 3k , 3  given as 
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2

45
g  then 2X  is D-optimal and 3X , 4X  are A-optimal, where  

2X , 3X , 4X  1,0511Φ  are given in as 
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OPTYMALNOŚĆ W SPRĘŻYNOWYCH UKŁADACH WAGOWYCH 

 

W pracy przedstawiono zagadnienie A- i D-optymalności sprężynowego układu wagowego. 

Rozważania teoretyczne zostały zobrazowane przykładem konstrukcji macierzy układu w oparciu 

o macierze incydencji układów zrównoważonych o blokach niekompletnych. 

 




