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ON MODEL SELECTION IN SOME REGULARIZED  
LINEAR REGRESSION METHODS 

 
Abstract. A dynamic development of various regularization formulas in linear models has 

been observed recently. Penalizing the values of coefficients affects decreasing of the variance 
(shrinking coefficients to zero) and feature selection (setting zero for some coefficients). Feature 
selection via regularized linear models is preferred over popular wrapper methods in high dimen-
sion due to less computational burden as well as due to the fact that it is less prone to overfitting. 
However, estimated coefficients (and as a result quality of the model) depend on tuning parame-
ters. Using model selection criteria available in R implementation does not guarantee that optimal 
model will be chosen. Having done simulation study we propose to use EDC criterion as an alter-
native. 

Key words: model selection, EDC, regularization, linear models, feature selection.  
 
 

I. INTRODUCTION 
 
The model selection task is strictly connected to feature selection. Both these 

tasks are equivalent when one does not take into account the interaction terms or 
additional variables which are the functions of input variables in linear models. 
The feature selection has recently seen plenty of interest and it has gained a spe-
cial position in data mining. Discarding the irrelevant variables from the data 
improves the predictive accuracy of the models (overfitting avoidance). Identifi-
cation of the most informative features gives some insight into data generation 
process and it can minimize the costs of data collection in the future. The meth-
ods of feature selection are currently classified into three groups: filters, wrap-
pers and embedded methods (i.e. see Guyon at al. 2006). Regularized linear 
models which represent embedded methods approach are particularly recom-
mended in high dimension. They are relatively fast and less prone to overfitting 
than other techniques. Unlike commonly applied univariate filters, regularized 
linear models can capture the joint impact of predictors on the response. How-
ever, the main problem with applying them is a setting the regularization pa-
rameters. It has the decisive impact on the quality of the models. In practice the 
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regularization parameters are set using model selection criteria. Unfortunately, 
using the criteria available in R implementation does not guarantee that optimal 
model will be chosen. The goal of this paper is to verify the usefulness of vari-
ous model selection criteria in some regularized linear models. 

 
 

II. REGULARIZED LINEAR REGRESSION 
 
In regression problem one has given a vector of predictors ),...,( 1 pXXX  

and real-valued response Y. Given N multidimensional observations 
 

}}{1,...,):),(),...,,{( NY,iy,X,...,Xyy ip1N1  (Xxxx iN1  

 
the goal is to estimate the function: : y = f(x). In regularized linear models pa-
rameters are estimated by minimizing the sum of loss function (often squared 
loss) and penalty component: 
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Various methods proposed in the literature differ mainly with regards to the 

penalty component  βλ,P . One of the most popular ones (the sum of absolute 

values of the coefficients, so called LASSO) was proposed by (Tibshirani 1996). 
Zou and Hastie (2005) proposed penalty component (elastic net) which is  
a compromise between ridge regression and LASSO: 
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These methods perform shrinking of the coefficients to zero (what results 

with decreasing the variance) and feature selection (when some coefficients are 
equal zero). The amount of shrinkage and at the same time the quality of the 
model depend on tuning of the parameters which are set in practice with a use of 
model selection criteria. The estimation of the parameters in LASSO requires 
quadratic programming with linear constrains. Approximate solutions are more 
practical and more commonly used. Efron et al. (2004) proposed LARS algo-
rithm which is very fast and probably the most popular algorithm currently 
available. The R implementation of the elastic net is also based on it. 



On Model Selection in Some Regularized Linear Regression Methods 

 

117

In LARS, variables are successively included into the model and coefficients 
are iteratively updated. The criterion is based on correlation. The model is fitted 
to the current residuum at every step and algorithm requires no more steps than 
the number of predictors. As a result, the family of nested models which differ 
with the number of predictors is obtained. The last stage is to decide how many 
variables the model should consist of. It affects mainly the quality of the final 
model. 

As mentioned in Introduction, the R implementation (packages: lars and 
elasticnet) offers Cp statistic or prediction error estimated by cross-
validation for that purpose. As standard errors of estimations by cross-validation 
are also directly available, the application of one standard error rule (1SE rule) is 
possible. It means choosing the model with a lesser number of parameters whose 
error is no more than one standard error above the error of the best model. Such 
strategy is applied to avoid overfitting. As we will see in the experiment, imple-
mented criteria do not always lead to optimal model. In the next section we list 
some alternatives for model selection. 

 
 

III. MODEL SELECTION CRITERIA 
 
Usually the quality of the model is defined as a capability to generalization 

which means the accurate prediction for future observations (out of training set). 
As the estimation of prediction error in training set is too optimistic there are 
generally two approaches proposed in the literature. 

The first approach uses the correction for mentioned optimism. Some of the 
propositions are listed in (Maddala 2008, p.548) but we focus at currently more 
popular criteria which are expressed as a sum of two components: prediction 
error (often increasing function of this error) and the penalty for a number of 
parameters. As the error is estimated in the training set, models with a greater 
number of parameters yield more accurate (in-sample) predictions, but the pen-
alty is higher. On the other hand, underestimated models yield greater errors 
although the penalty is low. Thus, the criterion is a compromise between good-
ness of fit and complexity of the models. The problem of model selection can 
also be described from the prediction error decomposition perspective or in other 
words via bias-variance tradeoff (see i.e. Hastie et al. 2009). Note that in this 
paper we have limited our interest to the linear models without interaction terms 
and variables being functions of input variables. In such cases k in formulas 
below denotes the number of original variables. Mentioned Cp statistic takes 
a form: 
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where: RSS is a residual sum of squares for model with k parameters, N is the 
number of observations. As the variance is estimated for the model with all input 
variables, the criterion cannot be applied in case when Np . Commonly used 

for model selection are information criteria. They can be written in general form 
as: 
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where P(N) is a function that decides about amount of penalty for the number of 
parameters. Several criteria proposed in the literature differ with a term P(N) (for 
a review see i.e. Kundu and Murali 1996). The most popular are AIC criterion 
with   2NP  and BIC with   )log(NNP . Bai et al. (1986) proposed to 

apply the penalty which would satisfy the conditions (EDC criterion): 
 

 
 N

NP

N

NP
NN loglog

)(
lim0

)(
lim and . (5) 

 
For example  NP  can be a square root of the number of observations. 

Kundu and Murali (1996) showed empirically that this criterion very radically 
decreases the number of parameters. Note that BIC also satisfies the conditions 
(5). Hurvich and Tsai (1989) proposed the modified version of AIC, 
recommended especially in the case of small training samples or a great number 
of variables (see Burnham and Anderson (2002)): 
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The second approach to model selection is a direct estimation of out of sam-

ple prediction error using a validation set (with known values of response). In 
practice, such validation set is usually not available. If data are huge one can 
divide them into training set, validation set for model selection, and test set for 
model assessment. In case of a small number of observations cross-validation or 
bootstraping is performed. The number of folds in cross-validation depends on 
the training set size and on how the performance of the learning method varies 
with that size. Breiman and Spector (1992) recommend 5 or 10-folds. In case of 
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small training sets leave-one-out cross-validation is performed (every fold con-
tains one observation), which has low bias but can have a high variance. Such 
approach demands constructing the model N times, thus one can apply a conven-
ient approximation (for linear models) using generalized cross-validation crite-
rion (Wahba 1980): 
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It is worth mentioning that cross-validation performed for model selection 

cannot be treated as an assessment of the final model. For that purpose a differ-
ent test set is necessary. 

 
 

IV. EXPERIMENT 
 
The goal of the performed experiments is to assess the usefulness of known 

model selection criteria which are not implemented in R packages lars and 
elasticnet. We take them into account from the perspective of three poten-
tial advantages. Firstly – the accuracy of the obtained models, secondly – the 
number of irrelevant variables introduced into the model and thirdly – the com-
putational burden. The simulations are carried out according to the linear model: 
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The sizes of the train samples were chosen to be 200 in the first two experi-

ments and 50 in the third. The test samples always contained 500 observations. 
There were also noisy variables added to the data – various numbers in the par-
ticular experiments. Multicollinearity between predictors was introduced accord-
ing to the formula: 

 
 kkkkkkkkkk exxxxx   5*445*335*225*115*5  , (9) 

 
for  }15/,...,1,0{  pk , where p denotes the number of predictors. Note that 

relevant variables are collinear as well as a noisy. All coefficients jki  ,  

)10,...,0,4,...1(  ji  as well as the realizations of variables (despite 5*5 kx   
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which are the linear combinations of another predictors) were generated from 
univariate standarized normal distribution. The noise in formulas (8) and (9) was 
normally distributed with expected values 0 and standard deviation being the 
standard deviation of dependent variable (y or 5*5 kx   respectively) multiplied by 

randomly chosen }4.0,3.0,2.0,1.0{m . 

 
Experiment 1 
There were 10 noisy variables added to the data. Figure 1 depicts the num-

bers of irrelevant variables included to the models (left panels) and test errors 
(right panels) over 100 simulations. For both algorithms (LARS and elastic net) 
EDC includes fewest irrelevant variables to the models. At the same time test 
errors are comparable, although EDC yields occasionally high errors (three or 
four outliers). We confirmed it using post-hoc tests after Friedman’s test (Ne-
menyi 1963). The lowest mean error was obtained using BIC. It was signifi-
cantly lower than the one obtained by Cp and did not differ significantly from the 
one obtained by cross-validation with 1SE rule (CV+1SE). 

 
Figure 1.  The comparison of seven model selection criteria in the case  N=200  and  p=20.  

 Source: own computations. 
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Experiment 2 
There were 90 noisy variables added to the data. The results are presented in 

the similar way in Figure 2. Again we can conclude that EDC, BIC and CV+1SE 
outperform other criteria. When the number of variables has grown to 100 the 
differences became clearer. It can also be seen with regards to test errors. The 
post-hoc tests after Friedman’s test showed that EDC does not differ signifi-
cantly from BIC or CV+1SE and significantly outperforms other criteria. In 
elastic net for example, the absolute values of differences between average of 
the ranks (between EDC and other criteria) were: 2.15, 3.61, 0.32, 0.00, 2.55, 
3.62, 0.82 respectively. The critical difference was 0.90 for significance level 
0.05. At the same time EDC is the most radical criterion in discarding irrelevant 
variables. 

 
Figure 2.  The comparison of seven model selection criteria in the case  N=200  and  p=100. 

Source: own computations. 

 
 
Experiment 3 
This time we considered the case of only 50 observations in training sample 

and we added 30 noisy variables. The question is how model selection criteria 
deal with such settings with few degrees of freedom. The results are shown in 
Figure 3.  
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elastic net 



Mariusz Kubus 

 

122

 
Figure 3.  The comparison of eight model selection criteria in the case of few degrees  

of freedom (N=50 and p=40). 

Source: own computations. 

 
 
EDC is best in discarding noisy variables. The test errors seem to be compa-

rable in the boxplot from right-down panel (for the majority of the criteria), but 
the null-hypothesis in Friedman test was rejected for both algorithms. The low-
est average test error was yielded by Cp criterion (in elastic net) but the differ-
ence with error for EDC was not significant. The worst performance is seen in 
the case of the use of AIC. 

 
 

V. CONCLUSIONS 
 
Having conducted the experiments with various numbers of noisy variables 

we recommend the EDC criterion for model selection in LARS and elastic net. It 
clearly includes fewest noisy variables to the models. At the same time it yields 
prediction errors comparable to other criteria what was proved by post-hoc tests 
after Friedman test (the significance level was 0.05). Note that applying EDC 
criterion does not require the validation test, thus avoiding cross-validation pro-
cedure considerably reduces the computational cost in case of high dimension. 
The worst performance was observed for popular AIC criterion. 
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O WYBORZE POSTACI MODELU W WYBRANYCH METODACH  
REGULARYZOWANEJ REGRESJI LINIOWEJ 

 
W ostatnich latach można zaobserwować dynamiczny rozwój różnych postaci regularyzacji  

w modelach liniowych. Wprowadzenie kary za duże wartości współczynników skutkuje zmniej-
szeniem wariancji (wartości współczynników są ,,przyciągane” do zera) oraz eliminacją niektó-
rych zmiennych (niektóre współczynniki się zerują). Selekcja zmiennych za pomocą regularyzo-
wanych modeli liniowych jest w problemach wielowymiarowych preferowana wobec popularnego 
podejścia polegającego na przeszukiwaniu przestrzeni cech i ocenie podzbiorów zmiennych za 
pomocą kryterium jakości modelu (wrappers). Przyczyną są mniejsze koszty obliczeń i mniejsza 
podatność na nadmierne dopasowanie. Jednakże wartości estymowanych współczynników (a więc 
także jakość modelu) zależą od parametrów regularyzacji. Zaimplementowane w tym celu w 
programie R kryteria jakości modelu nie gwarantują wyboru modelu optymalnego. Na podstawie 
przeprowadzonych symulacji w artykule proponuje się zastosowanie kryterium EDC. 




