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IN BAYESIAN PARAMETRIC SURVIVAL MODELS 

 
Abstract. The Bayesian approach gives the possibility of using in the research additional in-

formation that is external to the sample. The primary objective of this paper is to analyse the im-
pact of the prior information on the posterior distribution in Bayesian parametric survival models. 
In this work the exponential models and Weibull models with different prior distributions have 
been estimated and compared. The aim of this research is to investigate the determinants of unem-
ployment duration. The models have been estimated using Markov chain Monte Carlo method 
with Gibbs sampling. 
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I. INTRODUCTION 

 
The Bayesian approach with the prior distribution gives the possibility of in-

corporating in the research additional information that is external to the sample. 
A prior distribution is the probability distribution that expresses the whole 
knowledge of a statistician on the estimated parameters before the data has been 
examined, it describes a degree of belief in different values of parameters 
(Silvey, 1978). We often have some additional prior information, for example 
from previous statistical analysis, which is worth using in the current research. 
Combining sample data and knowledge external to the sample allows us to ob-
tain more efficient estimators. The estimate precision and credibility can be im-
proved even with general prior information, which may be expressed as a prior 
distribution with large dispersion (Szreder, 1994).   

The choice of the prior distribution may be determined by such factors as the 
experiences gained in the previous studies, the researcher’s intuition or so-called 
expert knowledge. If prior information comes from the previous research, 
Bayesian estimation should lead to more precise results than classical methods. 
However, if prior information is subjective, obtained results might not be very 
credible.     
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The prior distributions which contain exact information and have an impact 
on the posterior distribution are called informative priors. In Bayesian approach, 
if we intend to obtain objectively correct results, we use prior distributions 
which have a minimal impact on the posterior distribution. Such distributions are 
called objective or non-informative prior distributions (Gelman et al., 2000). 

In this paper the impact of prior information on the posterior distribution for 
the parametric survival models is scrutinized (Ibrahim et al., 2001; Kim and 
Ibrahim, 2000). For this purpose exponential models and Weibull models have 
been estimated with standard non-informative prior distributions and informative 
prior distributions from previous studies. The aim of this research is to investi-
gate the determinants of unemployment duration. 
 
 

II. BAYESIAN PARAMETRIC SURVIVAL MODELS 
 
While investigating prior information in the parametric survival models we 

will concentrate on two most popular models: exponential and Weibull models 
(Blossfeld and Rohwer, 1995). Further information on the Bayesian approach to 
parametric survival models can be found in the work of Ibrahim et al. (2001).  

Let   nyy ,,1 y  be survival times, where iy , ni ...,,1  are independent 

and have an identical exponential distribution with parameter  . The censoring 

indicators we denote by   nvv ,,1 v , where 0iv  if iy  is right censoring 

and 1iv  if iy  is failure time, ni ...,,1 . The density function for iy  is 

   ii yyf   exp| , the survival function    ii yyS   exp| . Let 

X , ( kn ) be a matrix of independent variables, for which ix  denotes ith row. 

Then observed data is represented as follows  vXy ,,,nD  .  

Let us assume that  βx ii   , where ix , ( 1k ) is a vector of covari-

ates, β , ( 1k ) is a vector of regression coefficients and   is a known function. 

For    βxβx ii  exp , we have the following likelihood function: 
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Most frequently for regression coefficients β  we choose uniform improper 

prior or normal prior distribution. In our model we take a k–dimensional normal 
prior  00 ,ΣμkN  for β , where 0μ  denotes the prior mean vector, and 0Σ  denotes 

the prior covariance matrix. Then the posteriori distribution for β  is given by 

 
      00 ,||| Σμβββ pDLDp  . (2) 

 
where  00,| Σμβp  denotes multivariate normal density. 

The second model investigated in this paper is Weibull model. Let now 

  nyy ,,1 y  denote survival times, where iy , ni ...,,1  are independent 

and have identical Weibull distribution with parameters:   and  . The censor-

ing indicators are denoted as previously. Then the density function for iy  is 

     iii yyyf   exp,| 1 . For   ln  we have the following like-

lihood function: 
 

       iii yyyf expexp,| 1   , (3) 

 
whereas the survival function is given by the formula: 

     ii yyS expexp,|  . 

The unknown parameters   and   are random variables, so that we can as-
sume their independence in further considerations. 

For the observed data  vXy ,,,nD   and βxii  , we have the follow-

ing likelihood function: 
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For regression coefficients β  we choose k-dimensional normal prior distri-

bution  00,ΣμkN , whereas for   we choose gamma prior distribution 

 00 ,kG  . Then the posteriori distribution is given by: 

 
        0000 ,|,||,|, kppDLDp  Σμβββ  , (5) 

 
where  00,| Σμβp  denotes multivariate normal density and  00 ,| kp   

gamma distribution. 
 
 

III. EMPIRICAL EXAMPLES 
 
The empirical examples presented in this study refer to the event of unem-

ployment. The analysis of the unemployment determinants with the use of clas-
sical event history models can be found in Drobnič and Frątczak’s (2001) work. 

The data set used in this study comes from the survey of Central Statistical 
Office – “Household budgets in 2009”. Depending on the place of living the 
impact of individual considered factors on unemployment duration is different. 
For the purpose of this research, we take into consideration people living in the 
cities of more than 200 000 inhabitants, unemployed, looking for a job and ready 
to take it up (Eurostat). In this way 502 individuals were selected, 27 of them 
have already found a job and waited for it to start – for these subjects the event 
holds, while the others are censored individuals.  

In this model, time is a dependent variable defined as the number of months  
of unemployment. Since different factors can determine unemployment depend-
ing on its duration, only such individuals were investigated who had remained 
unemployed maximally for 24 months. Characteristics of human capital which 
most frequently diversify unemployment rates such as age (in years), sex (1 – man, 
2 – woman), education level (1 – higher, 2 – post-secondary, 3 – secondary pro-
fessional, 4 – secondary general, 5 – basic vocational, 6 – primary school were 
chosen as independent variables.  

The models were estimated using Markov chain Monte Carlo method with 
Gibbs sampling (Casella and George, 1992). The number of burn-in samples is 
assumed to be 2000 and the posterior samples 10000. Using Geweke’s test (Ge-
weke, 1992) it was found that there is no indication that the Markov chain has 
not converged for all the parameters of investigated models, with the signifi-
cance level of 0.01.  
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Table 1. The prior distributions and the posterior distributions 

Model 1 

Prior distributions Posterior distributions Parameter 

Mean Standard dev. Mean Standard dev. HPD 

Intercept 0 610  4.3154 0.0291 (4.2598, 4.3728) 

Sex 1 0 610  0.0329 0.00985 (0.0144, 0.0531) 

Education 1 0 610  –2.2786 0.0256 (–2.3331, –2.2319) 

Education 2 0 610  –1.8051 0.0340 (–1.8715, –1.7386) 

Education 3 0 610  –0.6908 0.0283 (–0.7464, –0.6360) 

Education 4 0 610  –1.6778 0.0270 (–1.7339, –1.6263) 

Education 5 0 610  –1.5169 0.0263 (–1.5700, –1.4667) 

Age 0 610  0.0617 0.00052 (0.0607, 0.0628) 

Source: own calculations. 
 
 

For non-informative prior distributions results similar to maximum likeli-
hood estimates were received, but their significance is different. In table 2 poste-
rior distributions for different prior distributions for variables such as sex and 
age are presented. In all models for other parameters normal prior distributions 
were chosen. To obtain credible results informative prior distributions from the 
same research in the year 2008 were used. In models: I, II, III and IV the mean 
from the year 2008 for cities over 200 000 inhabitants was used. In models V 
and VI the mean from the year 2008 was used referring to the data for the whole 
country. 

For data from 2009, estimated with non-informative prior distributions, pa-
rameter sex has a lower value than for the data from 2008, under the same as-
sumption. For big variance we received similar estimations independent of the 
assumed mean. Often instead of non-informative prior distributions, least-
informative prior distributions are chosen, for example normal distribution with 
zero means and variance 1. With this assumption the results are similar to the 

previous results for zero means and variance 
610 . When choosing small vari-

ance one must be careful. In model VI (Table 2) for parameter sex in informative 
prior with mean for the whole country we received another direction of interde-
pendence. For parameter age in model VI (Table 2) the mean for big cities and 
the whole country is similar, therefore results in all models are similar. 
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Table 2. The prior distributions and the posterior distributions for sex and age. 

Sex Age 

Prior distributions Posterior distributions Prior distributions 
Posterior  

distributions 
Model 

Mean St. dev. Mean St. dev. Mean St. dev. Mean St. dev. 

I 0 610  0.0329 0.00985 0 610  0.0617 0.00052 

II 0.1532 610  0.0331 0.00966 0.0178 610  0.0617 0.00052 

III 0.1532 1 0.0331 0.00973 0.0178 1 0.0617 0.00053 

IV 0.1532 0.0001 0.0506 0.00114 0.0178 0.0001 0.0616 0.00052 

V –0.3350 1 0.0330 0.01000 0.0160 1 0.0617 0.00052 

VI –0.3350 0.0001 –0.0180 0.00037 0.0160 0.0001 0.0615 0.00052 

Source: own calculations. 

 

 With similar assumptions for regression coefficients two Weibull models 
were estimated, in which a non-informative gamma prior distribution with the 
shape parameter equalling 0.001 and the same value for the inverse scale pa-
rameter were additionally chosen for the shape parameter. 
 
 

Table 3. The prior distributions and the posterior distributions for Weibull models. 

Weibull model 1 Weibull model 2 

Prior distributions Posterior distributions Prior distributions Posterior distributions Parameter 

Mean St. dev. Mean St. dev. Mean St. dev. Mean St. dev. 

Intercept 0 610  3.9213 0.0262 0 610  3.9081 0.0247 

Sex 1 0 610  0.00644 0.00833 0.1532 0.0001 0.0344 0.00119 

Education 1 0 610  –1.9597 0.0234 0 610  –1.9532 0.0223 

Education 2 0 610  –1.5210 0.0298 0 610  –1.5229 0.0291 

Education 3 0 610  –0.5956 0.0249 0 610  –0.5931 0.0241 

Education 4 0 610  –1.4952 0.0240 0 610  –1.4870 0.0229 

Education 5 0 610  –1.3207 0.0236 0 610  –1.3222 0.0227 

Age 0 610  0.0551 0.00046 0.0178 0.0001 0.0550 0.000457 

Weibull shape gamma 1.1939 0.00427 gamma 1.1932 0.00424 

Source: own calculations. 
 

 For Weibull models (Table 3) we can observe the same impact of prior dis-
tributions on posterior distribution as in exponential models. The exponential 
model was estimated as a special case of Weibull model. At the significance 
level of 0.05 the hypothesis that shape parameter of Weibull model equals 1 has 
to be rejected. Moreover, a smaller value of DIC statistics shows the superiority 
of Weibull model. 
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IV. SUMMARY AND CONCLUSIONS 
 
The abovementioned examples indicate how changes in prior distributions 

influence posterior distribution. The researcher’s belief in having information 
before the research is expressed as a value of standard deviation in prior distribu-
tions. The big standard deviation indicates a lack of precise information about 
the problem in question. It was suggested that if a big enough variance is se-
lected, slight changes of mean do not influence the results of estimates.  

The sample data is the foundation of statistical inference. If we have much 
sample information, the significance of prior information decreases. Even sig-
nificant changes in prior distributions do not alter greatly posterior distributions 
(Silvey, 1978). Therefore in this paper a small size sample limited to the inhabi-
tants of big cities was investigated in order to show the influence of prior distri-
butions on posterior distributions. As the classical approach leverages boundary 
theorems and requires a big sample, for a small sample it is essential to use 
Bayesian approach, even if we do not have any prior information, because we 
can choose non-informative prior distributions (Gelman et al. 2000). 

The presented empirical examples seem to reveal that all variables are statis-
tically significant for 0.05, except sex variable in Weibull model with non-
informative prior distributions. For people living in big cities it might be as-
sumed that having a higher education level than primary gives a better chance of 
finding a job. It was indicated that the likelihood of finding a job decreases by 
about 5% as the age of a respondent increases by one year. For these two charac-
teristics the findings for big cities are similar to these observed in the whole 
country (Grzenda, 2011), whereas for the sex determinant the results suggest 
different trends. In fact, for big cities it was found that men are about 3% less 
likely to find a job than women, which is unlike in the entire country. 
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ZNACZENIE INFORMACJI A PRIORI W BAYESOWSKICH PARAMETRYCZNYCH 
MODELACH PRZEŻYCIA 

 
 W pracy przedstawiono parametryczne modele przeżycia w ujęciu bayesowskim. Podejście 
bayesowskie wymaga zadania rozkładów a priori dla szacowanych parametrów modelu. Rozkład 
a priori parametru jest rozkładem prawdopodobieństwa, który wyraża całą wiedzę badacza  
o szacowanym parametrze przed sprawdzeniem aktualnych danych. W literaturze przedmiotu 
często spotyka się nieinformacyjne rozkłady a priori, które wyrażają brak wstępnej wiedzy bada-
cza o szacowanych parametrach modelu. W celu pokazania znaczenia informacji a priori oraz jej 
wpływu na rozkład a posteriori oszacowano kilka parametrycznych modeli przeżycia przy róż-
nych rozkładach a priori. Przedmiot badań stanowią determinanty długości czasu pozostawania 
bez pracy. 




