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BAYESIAN SPATIAL QUANTILE REGRESSION 
 

Abstract. In this paper we present a Bayesian spatial model quantile regression. We develop 
a spatial quantile regression model that does not assume normality and allows the covariates to 
affect the entire conditional distribution, rather than just the mean. The conditional distribution is 
allowed to vary from site-to-site and is smoothed with a spatial prior. 
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I. INTRODUCTION 

 
The aim of this paper is to present a Bayesian spatial model quantile 

regression. We describe a spatial quantile regression model that does not assume 
normality and allows the covariates to affect the entire conditional distribution, 
rather than just the mean. The conditional distribution is allowed to vary from 
site-to-site and is smoothed with a spatial prior. We knew from the literature 
quantile regression model (Koenker 1978, 2001). The standard model approach 
is to estimate the effect of the covariates separately for a few quantile levels by 
minimizing an objective function. This approach is known due to computational 
convenience and theoretical properties. This approach performs separate 
analyses for each quantile level of interest. As a result, the quantile estimates can 
cross that for a particular combination of covariates the estimated quantile levels 
are non-increasing, which can cause problems for prediction. 

 
II. QUANTILE REGRESSION 

 
We began from density regression, and let f(yx) be the density of some 

covariates x. There are several models for the conditional distribution, Bayesian 
models. Many of these models are infinite mixtures with mixture probabilities 
that depend on x. Although these models are quite flexible, one drawback is the 
difficulty in interpreting the effects of each covariate, for example, whether there 
is a statistically significant time trend in the distribution's upper tail probability. 

As a compromise between general Bayesian density regression and the usual 
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additive mean regression, we describe a Bayesian spatial quantile regression 
model. Quantile regression models the distribution's quantiles as additive 
functions of the predictors. This additive structure permits inference on the 
effect of individual covariates on the response's quantiles. The additive structure 
also permits density regression for high dimensional x. 

Let yi be the dependent variable and Xi = (Xi1,…,Xip)
’ be the covariates. 

Quantile regression models yi 's conditional density based on its quantile 
function (inverse CDF) q( Xi; si), defined as P{yi < q(Xi)} =   [0; 1]. 

We model q(Xi;) as 
 

  q(Xi), = )(' iX , (1) 

 
where )( = ( )(1  ,…, )( p )’ are the coefficients for the  th quantile level. 

The quantile regression estimation is a solution of the following 
optimization problem: 
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In this method different quantiles are analyzed separately. The distribution 

of the error term is unspecified. Quantile regression methods and they 
applications on the financial markets can be found in Trzpiot (6-11) among 
others. 

 
 

II. MODEL FOR THE QUANTILE PROCESS 
 
We begin modeling the quantile function by ignoring spatial location and 

assuming the model with the intercept, for that Xi = 1. In this case, the quantile 
function can be reduced to q( ) = (). The process () must be constructed so 
that q( ) is non-decreasing in . We can notice 
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where M is the number of basis functions, Bm( ) is a known basis function of , 
m are unknown coefficients that determine the shape of the quantile function. 
We use Bernstein basis polynomials 
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An attractive feature of these basis functions is that if m m-1 for all m > 1, 

then ( ), and thus q(), is an increasing function of . This reduces the 
complicated monotonicity constraint to a sequence of constraints  m = m -m-1 
0, for m = 2, …,M. 

These constraints are sufficient, but not necessary, to ensure an increasing 
function. As is typical for semiparametric models (Reich B.J., Fuentes M., 
2007), for finite M this model does not span the entire class of continuous 
monotonic functions. However, as M increases, the Bernstein polynomials basis 
with these constraints induces a prior with dense support on the space of 
continuous monotone functions from [0; 1]  R (Chang et al., 2007). 

Since the constraints on  = (1, …, M) are expressed in terms of the 
difference between adjacent terms, we reparameterize to 1 = 1 and m = m - 
m-1 for m = 2, …, M. The original basis function coefficients are then m = 
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Following Cai and Dunson (2008), we ensure the quantile constraint by 

introducing a latent unconstrained variable *
m  and taking 1 = *

m  and 
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for m > 1. 

The *
m  have independent normal priors *

m  ~ N( m (), 2), with 

unknown hyperparameters . We can use m () in a center the quantile 

process on a parametric distribution f0(y), for example, a N(0; 2), random 
variable with  = (0; 0). 

Letting q0() be the quantile function of f0(y), the m () are then 

chosen so that 
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where 
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The )(m  are chosen to correspond to the following ridge regression 

estimator: 
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where dm > 0 for m > 1, {1,…,K} is a dense grid on (0,1). We find that simple 
parametric quantile curves can often be approximated almost perfectly with 
fewer than M terms. Therefore, several combinations of d give essentially the 
same fit, including some undesirable solutions with negative values for elements 
of  . As   0, the quantile functions are increasing shrunk towards the 
parametric quantile function q0(), and the likelihood is similar to f0(y). 

 
 
III. MODEL FOR THE QUANTILE PROCESS WITH COVARIATES 
 
Next possibility to model the quantile process is to add covariates. Then the 

conditional quantile function we can denote as 
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Like in previous rules, the quantile curves are modeled using Bernstein basis 

polynomials 
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where jm are unknown coefficients. The processes j( ) must be constructed so 
that )( iXq   is nondecreasing in  for all Xi. Collecting terms with common 

basis functions gives 
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where 
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1
)(  . Therefore, if )( im X  )(1 im X for all m > 1, 

then )(' iX  and thus )( iXq  is is an increasing function of . 
To specify our prior for the jm to ensure monotonicity, we assume that Xi1 = 

1 for the intercept and the remaining covariates are suitably scaled so that Xij  
[0; 1] for j > 1. Since the constraints are written in terms of the difference 
between adjacent terms, we reparameterize to j1 = j1 and jm = jm - jm-1 for m 
= 2, …, M. We ensure the quantile constraint by introducing latent unconstrained 

variable *
jm  ~ N( jm (); 2

j ) and taking 
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for all j = 1, …, p and m = 1, …, M. Recalling Xi1 = 1 and Xij  [0; 1] for j = 2, 
…, p, and thus Xijjm  XijI (jm < 0) jm  I (jm < 0) jm for j > 1, 
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for all Xi, giving a valid quantile process. As in previous section we center the 
intercept curve on a parametric quantile function q0(). 

The remaining coefficients have *
jm () = 0 for j > 1. Although this model 

is quite flexible, we have assumed that the quantile process is a linear function of 
the covariates, simplifying interpretation. In some applications the linear 
quantile relationship may be overly-restrictive. In this case, transformations of 
the original predictors such as interactions or basis functions can be added to 
give a more flexible model. 
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The linear relationship between the predictors and the response is not 
invariant to transformations of the response. To alleviate some sensitivity to 
transformations, it may be possible to develop a nonlinear model for q( Xi), so 
that q(Xi) and T(q(Xi)) span the same class of functions (and therefore 
response distributions) for a class of transformations T. 

 
 

IV. MODEL FOR THE SPATIAL QUANTILE PROCESS 
WITH COVARIATES 

 
Let yi be the observed data time and space location (t; s)i, and denote the 

time and spatial location of the ith observation as ti and si, respectively. 
Our goal is in estimating the conditional density of yi as a function of si and 

covariates Xi = (Xi1, …, Xip)’,where Xi1 = 1 for the intercept. 
In particular, we would like to study the conditions that lead to extreme 

value depending on time. 
Given our interest in extreme events and return levels, we model yi's 

conditional density based on its quantile (inverse CDF) function q(Xi;si), 
which is defined so that P{yi < q(Xi; si)} = ,   [0; 1]. 

We try to model q(Xi; si), as 
 

  q(Xi; si), = ),('
ii sX  , (13) 

 
where ),( is = ( ),(1 is ,…, ),( ip s ) are the spatially dependent 

coefficients for the  th quantile level. Directly modeling the quantile function 
makes explicit the effect of each covariate on the probability of an extreme 
value. 

We know that the quantile process is different at each spatial location, 
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where jm(s) are spatially-varying basis function coefficients. We enforce the 
monotonicity constraint at each spatial location by introducing latent Gaussian 

parameters *
jm (s). The latent parameters relate to the basis function 

coefficients as jm(s) = )(
1

s
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for all j = 1, …, p and m = 1, …, M. 

To encourage the conditional density functions to vary smoothly across 

space we model the *
jm (s) as spatial processes. The *

jm (s) are independent 

(over j and m) Gaussian spatial processes with mean E( *
jm (s)) = *

jm () and 

exponential spatial covariance 
 

  Cov( *
jm (s); *

jm (s’)) = )/'exp(2
jj ss   , (16) 

 

where 2
j  is the variance of *

jm (s) and j determines the range of the spatial 

correlation function. 
We have different models as special cases of the last model. 
Setting j(; s)  j for all , s, and j > 1 gives the usual linear regression 

model with location shifted by 


p

j
jijX

2
 and residual density determined by 

),(1 s . 

Another possibility is setting j(; s)   (s) for all  and j > 1 gives the 
spatially dependent coefficients model where the effect of Xj on the mean varies 
across space via the spatial process j(s). 

Allowing j(; s) to vary with s and  relaxes the assumption that the 
covariates simply affect the mean response, and gives a density regression model 
where the covariates are allowed to affect the shape of the response distribution. 
In particular, the covariates can have different effects on the center ( = 0:5) and 
tails (  0 and   1) of the density. 

 
 

V. ESTIMATION FOR BAYESIAN SPATIAL QUANTILE 
REGRESSION 

 
Spatial quantile regression model can be implemented efficiently for 

moderately sized data sets. To approximate this model, we use a two stage 
approach. We first perform separate quantile regression at each site for a grid of 
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quantile levels to obtain estimates of the quantile process and their asymptotic 
covariance. In the second stage, we analyze these initial estimates using the 
Bayesian spatial model for the quantile process. 

The usual quantile regression estimate (Koenker, 2005) for quantile level k 

and spatial location s is ),(ˆ
ik s = ( ),(1̂ ik s ,…, ),(ˆ

ikp s ) 
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This estimate is easily obtained from the quantreg package in R and is 

consistent for the true quantile function and has asymptotic covariance 
(Koenker, 2005) where ns is the number of observations at site s, 
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where ns is the number of observations at site s, H( ) = 
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Although consistent as the number of observations at a given site goes to 1, 

these estimates are not smooth over space or quantile level, and do not ensure a 
non-crossing quantile function for all X. Therefore, we smooth these initial 
estimates using the spatial model for the quantile process 
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  and cov( )(ˆ
is ) = i  (19) 

 
We fit the mode 
 

  )(ˆ
is ~ N( iis ),( ), (20) 

 
where the elements of )( is =( ),( 11 is ,…, ),(1 iK s , ),( 12 is ,…, 

),( iKp s )’ are functions of Bernstein basis polynomials. 



Bayesian Spatial Quantile Regression 

 

117

This approximation gives reduction in computational time because the 
dimension of the response is reduced from the number of observations at each 
site to the number of quantile levels in the approximation, and the posteriors for 
the parameters that define are fully-conjugate allowing for Gibbs updates and 
rapid convergence. 
 

REFERENCES 
 

Cai B, Dunson D. B. (2007), Bayesian multivariate isotonic regression splines: Applications to 
carcinogenicity studies. Journal of the American Statistical Association, 102: 1158-1171. 

Chang I, Chien L, Hsiung CA, Wen C, Wu Y (2007). Shape restricted regression with random 
Bernstein polynomials. IMS Lecture Notes {Monograph Series, 54: 187-202. 

Koenker R., Basset B. (1978), Regression Quantiles, Econometrica, Vol 46. 
Koenker R., Hallock K. F. (2001), Quantile Regression, Journal of Economic Perspectives, 15. 
Reich B.J., Fuentes M. (2007), A multivariate semiparametric Bayesian spatial modeling 

framework for hurricane surface wind fields, Annals of Applied Statistics, 1: 249-264. 
Trzpiot G. (2009), Quantile Regression Model versus Factor Model Estimation, Financial 

Investments and Insurances – World Trends and Polish Market, University of Economics in 
Wrocław 60. 469-479. 

Trzpiot G. (2009), Application weighted VaR in capital allocation, Polish Journal of 
Environmental Studies. Olsztyn. 18. 5B. 203-208. 

Trzpiot G. (2009), Estimation methods for quantile regression, Economics Studies 53, University 
of Economics in Katowice. 81-90. 

Trzpiot G. (2010), Quantile Regression Model of Return Rate Relation – Volatility for Some 
Warsaw Stock Exchange Indexes (in Polish), Finances. Financial Markets and Insurances. 
Capital Market, University of Szczecin. 28. 61-76. 

Trzpiot G. (2011) Bayesian Quantile Regression, Economics Studies 65, University of Economics 
in Katowice, 33-44. 

Trzpiot G. (2012) Spatial Quantile Regression, Comparative Economic Research. Central and 
Eastern Europe, Vol. 15, No 4, 265-279, Wydawnictwo Uniwersytetu Łódzkiego. 

 
 

Grażyna Trzpiot 
 

BAYESOWSKA PRZESTRZENNA REGRESJA KWANTYLOWA 
 

W wielu zastosowaniach, podstawowym problemem jest opis i analiza wpływu wektora 
skorelowanych zmiennych objaśniających X na zmienna objaśnianą Y. W przypadku, gdy 
obserwacje badanych zmiennych są dodatkowo rozmieszczone przestrzennie, zadanie jest jeszcze 
trudniejsze, ponieważ mamy dodatkowe zależności, wynikające ze zmienności przestrzennej.  

Klasyczne podejście stosowane do takich problemów wykorzystuje założenie o skończonej 
wartości oczekiwanej zmiennych Y, wówczas przestrzenna funkcja regresji jest dobrze określona 
i dostarcza informacji o zależności zmiennej Y od zmiennych X. W tej pracy, w miejsce 
przestrzenna funkcja regresji wykorzystującej średnią, rozpatrzymy przestrzenna regresję 
kwantylową. Regresja kwantylowa zostanie omówiona w przestrzennym kontekście. 
Semiparametryczny model bayesowski i jego estymacja jest głównym celem tej pracy. Dodatkowe 
zasoby informacji o zmienności otrzymujemy badając kwantyle, wychodząc poza tradycyjny opis 
klasycznej regresji. Estymacja kwantylowa w modelu przestrzennym uwydatnia zależności 
przestrzenne dla różnych fragmentów rozważanych rozkładów. 

 


