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ON MSE ESTIMATION OF SOME MISSPECIFIED 
PREDICTOR 

 
 Abstract. The problem of prediction of subpopulation (domain) total is studied as in Rao 
(2003). The problem is inspired by results obtained by Żądło (2012) who considered two predic-
tors – empirical best linear unbiased predictor (EBLUP) under some correct model and some 
simpler misspecified predictor. In the simulation study he showed that the misspecified predictor 
may be in some cases more accurate than the EBLUP derived under the correct model what re-
sulted from the decrease of accuracy of the EBLUP due to the estimation of unknown parameters 
of the correct model. But the problem occurred in the case of MSE estimation – under the correct 
model the bias of the MSE estimator derived under the misspecified model was very large. Hence, 
in the paper we consider a predictor based on some misspecified model and we derive some MSE 
estimator under the correct model and we propose usage of two other MSE estimators. 
 Key words: small area estimation, MSE estimation, model misspecification. 
 
 

I. INTRODUCTION 
 
The finite population   consists of N units. The population vector of the 

variable of interest is  1 2, ,...,y
T

Ny y y  and it is treated as a realization of 

a random vector 1 2, ,...,Y
T

NY Y Y    . The joint distribution of Y is denoted by  . 

From the population of N units, a sample s of n units is selected. For any sample 
s we can reorder the population vector y so that the first n elements are those in 

the sample: ,T T
s ry y y

T
     where sy  is the n - dimensional vector of observed 

values and ry  is the Nr - dimensional vector of unobserved values where Nr=N–

n. The set of unsampled elements is denoted by r s   . Hence, the vector Y 

can be reordered as follows: ,T T
s rY Y Y

T
    . The population is divided into D 

domains d  (d=1,...,D), each of size dN  (d=1,...,D). The set of sampled ele-

ments which belong to the d-th domain denoted by d ds s    consists of 
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dn  elements (where dn  may be random). Let us introduce additional notations: 

rd d ds    and rd d dN N n  . 

 
 

II. MODELS AND PREDICTORS 
 
 In the paper we consider two special cases of the General Linear Model 
(GLM) and the General Linear Mixed Model (GLMM). Models considered in 
the paper mentioned in the abstract (Żądło (2012)) were quite complicated (i.e. 
spatial and temporal correlation in the longitudinal surveys) what implies very 
time-consuming computations. In the paper the considered superpopulation 
models will be quite simple because of large number of iterations in the Monte 
Carlo simulation study (and bootstrap and jackknife within each Monte Carlo 
iteration). 
 Firstly, let the correct superpopulation model denoted by   be given by: 

 
   idx βid d idY v e    (i=1,...,N; d=1,...,D)  (1) 

 
where idx  is a 1 p  vector of values of p auxiliary variables, β  is a 1p  vector 

of unknown parameters, 2~(0, )
iid

d vv  , 2~(0, )
iid

id ee  , and dv  and ide  are independ-

ent.  
 Secondly, let the misspecified superpopulation model denoted by M be giv-
en by 
 
   idx βid idY e   (i=1,...,N; d=1,...,D) (2) 

 

where 
2~(0, )

iid

id ee  , and dv  and ide  are independent. Under the misspecified 

model (2) the BLUP of the domain total is given by 
 

    ( )ˆ ˆ
idx β

d rd

miss
d idi s i

Y
 

    (3) 

 

where 1ˆ ( )T T
s s s sβ X X X Y , sX  is n p  matrix of values of auxiliary variables in 

the sample. Under the misspecified model (3) the MSE of (3) is given 
 

       1( ) 2ˆ( ) T
id s s idx X X x

rd rd

T
miss

M d e rd i i
MSE N 



 

   
    (4) 
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where idx  is a 1p  vector of values of auxiliary variables for the ith population 

element in the dth domain. 
 Let us introduce additional notations. Let 1( )-1 T

s s sA X X  , rd idx x
rdi

 , 

  1rdY
rd

id N
Y


 . Under the correct model the MSE of the predictor (3) is given 

by: 
( ) ( )ˆ ˆ( ) ( )miss miss
d d dMSE Var       

  1( )T T
id s s s sx X X X Y

d rd d
id idi s i i

Var Y Y


  
       

 1-1 T
rd s s s rdx A X Y Y

rd

T
NVar    

2 2( ) ( ) ( , )-1 -1 T -1 T -1 T
s s s s s s rd rd rd s s s rdA A X Y X A x 1 Y 1 x A X Y Y 1

rd rd rd

T
N N ND D Cov        

 2 2
1 ( )-1 T -1 T

rd s s s s rdx A X I 1 1 X A x
d d d

T
d D e n v n ndiag        

   2 2 2 22 -1 T
rd s sdx A X 1

de rd v rd rd v nN N N      . (5) 

 
 

III. MSE ESTIMATORS 
 
 Some results of MSE estimation are presented in the literature but for opti-
mal predictors. MSE estimators of EBLUPs are presented inter alia by Prasad 
and Rao (1990), Datta and Lahiri (2000), Żądło (2009). Some results for MSE 
estimators of empirical best predictors are presented by Jiang (2003), Jiang and 
Lahiri (2001), Jiang, Lahiri and Wan (2002), Molina and Rao (2010). In the 
paper MSE estimators will be studied not for a predictor optimal in some sense 
but for a predictor derived under some misspecified model. 

Let us consider the misspecified predictor (3). Let us note that the pre-
dictor does not depend on unknown model parameters. Its MSE under the correct 
model (1) is given by (5) and its formula depends on unknown model parameters. In 

the paper four estimators of ( )ˆ( )miss
dMSE   given by (5) will be considered. 

 Firstly, we will consider MSE estimator given by the formula (4) where 2
e  

is replaced by 2 1

1 1

ˆˆ ( ) ( )idx β
n D

e id
i d

n p Y 

 

   . The MSE estimator is unbiased 

but under the misspecified model (2). We will be interested in its properties un-
der the correct model (1). The MSE estimator in the simulation study will be 
denoted by miss. 
 Secondly, we will consider naive MSE estimator, given by (5), where 2

e  

and 2
v  are replaced by restricted maximum likelihood (REML) estimates under 
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(5) and normality of random components. Simulation results for the naive MSE 
estimator presented on the figures below will be denoted by naive. 
 Thirdly, we will correct the naive estimator due to the bias. Let 

2 2δ e v     . Using our notations the general formula of jackknife MSE esti-

mator of Jiang, Lahiri, Wan (2002) is given by: 
 

 ( )

1

1ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )δ δ δ
D

jack miss
d d d d d

d

D
MSE b b b

D  



     

    2
( ) ( )

1

1 ˆ ˆ ˆ ˆ( ) ( )δ δ
D

miss miss
d d d

d

D

D
 




    (6) 

 

where δ̂ d  is given by the same formula as δ̂  but it is based on the set ds s  

instead of s, ˆ( )δb  is given by (5) where δ  is replaced by δ̂ , ˆ( )δ db   is given by 

(5) where δ  is replaced by δ̂ d . What is more, ( )ˆ (.)miss
d  is given by (3) and it 

does not depend on unknown parameters. Hence, in our case the last (third) term 
of the right hand side of (6) equals zero. Simulation results for the jackknife 
MSE estimator presented on the figures below will be denoted by jack. 
 Fourthly, we will us parametric bootstrap method presented inter alia by 
Gonzalez-Manteiga et al. (2008) and Molina and Rao (2010). The procedure will 
be as follows: 
(i) based on the sample we estimate parameters of the model (1) using REML 

method under normality and we obtain estimates β̂ , 2ˆe , 2ˆv , 

(ii) then, we construct bootstrap superpopulation model * : * * *ˆ
idx βid d idY v e   , 

where i=1,...,N, d=1,....,D, * 2ˆ~ (0, )
iid

d vv N  , * 2ˆ~ (0, )
iid

id ee N  , 

(iii)  based on B realizations of *( )b
idY , where b=1,...,B, we compute B values of 

(3) which will be denoted by ( ) ( )ˆ miss b
d  (based on the sample with the same 

indices as in the original population) and B values of domain totals 
( ) *( )

d

b b
d idi

Y


 , 

(iv)  finally, we compute bootstrap MSE estimator as follows: 

( ) ( ) ( ) ( ) 2

1

1ˆ ˆ ˆ( ) ( )
B

boot miss miss b b
d d d

b

MSE
B   



  . 

What is important, in the bootstrap procedure normality is assumed both in the 
step (i) of parameter’s estimation and step (ii) of generating data. It means that in 
the simulation study for cases when the assumption of normality components is 
not met the presented procedure will be studied in the case of bootstrap model 
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misspecification. Simulation results for the bootstrap MSE estimator presented 
on the figures below will be denoted by boot. 
  
 

IV. SIMULATION STUDY 
 
 In each simulation study 2000 realizations of superpopulation model (1) 
were generated using R package (R Development Core Team (2012)). The popu-
lation of size N=1500 elements was divided into D=30 domains each of size 

50dN   elements. The sample size in 10 domains was 2 elements, in the next 

10 domains 3 elements and in the last 10 domains 4 elements what means that 
the overall sample size equaled n=90 elements. For each out of 2000 realizations 
of superpopulation model B=200 iterations of bootstrap procedure and D=30 
iterations of jackknife procedure were conducted. 
 It was assumed that , 0idx βi d    (but   was estimated in the simula-

tions), 2 1,e   three scenarios of values of 2
v : 2 10v   or 2 1v   or 2 0,1v  , 

nine scenarios of distributions of random components 2~(0, )
iid

d vv   and 

2~(0, )
iid

id ee  : normal-normal (i.e. normal distribution of dv  and normal distribu-

tion of ide ), normal-uniform (i.e. normal distribution of dv  and uniform distribu-

tion of ide ), normal-shifted exponential (i.e. normal distribution of dv  and shift-

ed exponential of ide ), uniform-normal, uniform-uniform, uniform-shifted expo-

nential, shifted exponential-normal, shifted exponential-uniform, shifted expo-
nential-shifted exponential.  
 In each simulation we compute values of the misspecified predictor (3), its 
simulation MSE but under the correct model (1), values of four MSE estimators 
proposed in the section 3 and their biases. In all of the considered cases parame-
ters 2

e  and 2
v  are estimated using restricted maximum likelihood method as-

suming normality of random components even in the cases of different distribu-
tions of random components. It means that in all of the cases except normal-
normal case the problem of misspecification of distribution of random compo-
nents in the model is considered. 
 In the following figures values of biases of the misspecified MSE estimator 
miss are omitted because of the unacceptable biases – for different domains and 
different distributions of random components its relative biases obtained in the 
simulation were as follows: for 2 10v   from –96,90% to –95,85; for 2 1v   

from –94,32% to –92,47; and for 2 0,1v   from –76,05% to –67,40%.  
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Fig. 1. Relative biases of MSE estimators for 2 10v   

Source: author’s calculations. 
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Fig. 2. Relative biases of MSE estimators for 2 1v   

Source: author’s calculations 
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Fig. 3. Relative biases of MSE estimators for 2 0,1v   

Source: author’s calculations. 

 
 In the Figures 1-3 distributions of relative model biases of naive, parametric 
bootstrap and jackknife MSE estimators for D=30 domains and different distribu-
tions of random components are presented. What is interesting, the biases of these 
three MSE estimators are very similar within three considered scenarios of different 
values of 2

v . What is more, for 2 10v   and 2 1v   (see Figure 1 and Figure 2) 
average over domains relative biases are close to zero even if the distribution of 
random components is misspecified (i.e. if other cases then normal-normal case are 
considered). Relative biases of MSE estimators for the case when 2 0,1v   (see 

Figure 3) are higher what results from the fact that in this case area effect dv  may be 

treated as negligible what implies low accuracy of 2
v  estimates. 

 Results obtained for three estimators are similar and it is difficult to indicate 
which is better in terms of relative bias. But it is possible to improve the results ob-
tained for bootstrap MSE estimator. It is possible using double bootstrap method 
proposed by Hall and Maiti (2006) but testing the method in the Monte Carlo simu-
lation study especially for large population may not be computationally feasible.  
 
 

V. CONCLUSION 
 

 In the paper we analyse the problem of MSE estimation of some predictor which 
is EBLUP under some misspecified model. The naive MSE estimator is derived and it 
is compared in different cases with other MSE estimators. Every of the proposed MSE 
estimators performs well even in the cases of model misspecification. 
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O ESTYMACJI MSE DLA PEWNEGO PREDYKTORA W PRZYPADKU  
ZŁEJ SPECYFIKACJI MODELU 

 
 Rozważany jest problem predykcji wartości globalnej w podpopulacji (domenie) jak w Rao 
(2003). Analizowane jest wykorzystanie predyktora, który jest empirycznym najlepszym liniowym 
nieobciążonym predyktorem, ale przy założeniu błędnego modelu. Dla rozważanego predyktora 
wyprowadzono postać naiwnego estymatora MSE dla prawidłowego modelu nadpopulacji oraz 
zaproponowano wykorzystanie estymatorów MSE typu jackknife i parametryczny bootstrap.  
W badaniu symulacyjnym analizowano względne obciążenia zaproponowanych estymatorów 
MSE. 


