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Abstract. Following a dynamic development of VaR estimation methods from 90s, in recent 

literature much attention has been paid to testing procedures designed to evaluate quality of VaR 
models. There has been a wide-ranging discussion on both – statistical properties and empirical 
application of the two most popular tests, which are Kupiec test from 1995 that considers the ratio 
of VaR exceedances and Christoffersen autocorrelation test from 1998. We focused on 
autocorrelation property and compared Christoffersen test to Ljung Box test of 1978 and to the 
proposition of Engle and Mangianelli from 2004. The goal of the paper was to explore the design 
of experiments in the context of evaluating power of autocorrelation tests. We presented and 
contrasted simulation experiments proposed in the literature, indicated their design influence on 
the results and proposed a new scheme for power evaluating in autocorrelation tests. 

Key words: VaR, experimental design, Monte Carlo, power of the test, correlation test, 
Kupiec test, Markov test, Ljung Box test, dynamic quantile test. 

 
 

I. INTRODUCTION 
 
Over last two decades, the concept of value at risk (VaR) has become very 

popular in risk valuation, especially in financial market. The idea of this measure 
is to give, in one number, information on the volume of risk that, in a given time 
interval, with a given probability will not be exceeded. Since the inception of 
VaR there has been a dynamic development in the area of model estimation and, 
on the other hand, statistical tests have been proposed to verify the quality of 
VaR forecasts in the light of historical process trajectories. These developments, 
in turn, created the need to assess properties of alternative testing procedures. 

Many alternative approaches have been proposed, referring to the design of 
experiments used in VaR tests evaluation. The way of conducting simulation 
studies in this context is broadly discussed in the literature. Moreover, the design 
of such experiments strongly influences practical conclusions referring to 
specific tests. 

The aim of this paper was to provide an overview of simulation experiments 
proposed in the literature for evaluating VaR tests and to present own 
proposition of an experimental design. For illustrative purposes, the proposed 
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experiment was used to provide an analysis of properties of Kupiec [1995] and 
Markov [1998] tests, as most often used for evaluating VaR forecasts. These 
popular tests were compared to Ljung Box test of 1978 and a dynamic quantile 
test proposed by Engle and Mangianelli in 2004. 

 
 

II. VAR BACKTESTING PROCEDURES 
 
The statistical inference referring to VaR models evaluation is based on the 

stochastic process of VaR exceptions: 
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where p   given tolerance level, tr   value of the rate of return at time t, 

( )tVaR p   value of the VaR forecast from moment t.  

The Kupiec test form 1995 is designed to assess the unconditional coverage 
property i.e. to verify whether the unconditional probability of exceeding VaR 
matches the assumed tolerance level p. To check this property the empirical rate 
of exceptions is utilized. The null hypothesis 0 1:H p   is tested by the 

following statistic: 
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where 1   unconditional probability of exceeding VaR forecast, 0t   number 

of non-exceptions, 1t   a number of exceptions, 1
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A dynamically developing group of tests, used to evaluate VaR forecasts, 
are tests of serial correlation in VaR failures. The idea behind these tests is to 
detect clusters of exceptions. They check therefore, whether the conditional 
probability of VaR failure is constant in time and equal to the assumed tolerance 
level (conditional coverage property). In Ljung-Box test of 1978, the null is 
formulated in terms of correlation coefficients between VaR exceptions, 

0 : 0,  1...kH k K   , and the test statistic has a following form: 
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where t  number of observations, k   correlation coefficient of order  

k between VaR exceptions [Berkowitz, Christoffersen, Pelletier 2011].  
In 1998, in order to test for serial correlation, Markov test was proposed 

[Christoffersen], in which the assumption is used that the process (1) forms  
a part of a Markov chain. The null hypothesis, formulated in terms of conditional 
probabilities of a single-step transition, 0 01 11:H   , is verified by the statistic 
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where ij  probability of reaching the state j at time t+1 on condition that at 

time t the process was at the state i, ijt   number of transitions form the state i to 

the state j, 01
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In the dynamic quantile test (DQ test), Engle and Mangianelli [2004] 
suggested using a stochastic process of the form t tHit I p  . The test is based 

on the regression tHit X    , where X matrix of m exogenous variables, 

particularly a constant, lags of tI  and VaR forecasts for time t.1 The testing 

procedure is based on checking statistical significance of the above regression, 
i.e. hypothesis 0 : 0H    is verified by the statistic 
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where ̂  MNK estimate of the vector of parameters in regression of the 

variable Hitt. 
 
 

III. THE DESIGN OF SIMULATION EXPERIMENTS 
 
The null hypothesis in Kupiec test assumes the unconditional probability of 

VaR exception at the fixed level p . The size properties are assessed through 

generating T independent Bernoulli trials with the probability of success in  
a single trial set to p, which equals the assumed tolerance level. In the presented 
study the tolerance was set to a 5% level. A standard procedure to obtain 

                                                 
1 In this paper 5 lags of the variable It were included. 



Marta Małecka 280

required VaR regressors in DQ test is to generate VaR estimates from 
GARCH(1,1)-normal process with innovations independent of the variable tI , 

which ensures statistical insignificance of the regression. Such procedure gives 
the sequence of outcomes of the process { }tI  that stays in line with the 

hypothesis of the unconditional probability of VaR exception at level p as well 
as with the hypothesis of lack of serial correlation in exceptions. The model can 
be thus used to evaluate the size properties of correlation tests as well.  

A simple technique of designing an experiment to evaluate the power of 
Kupiec test is to generate the process of VaR exceptions from the Bernoulli 
model with exception probabilities different than p . A procedure that may be 

used to assess the impact that serial correlation has on the power of Kupiec test 
is generating the trajectory of return process from GARCH(1,1)-normal model 
and getting VaR estimates from a homoscedastic model. Through a variance 
manipulation it can be ensured that the rate of exceptions is different than p . In 

this paper, we conducted an experiment in 8 variants, assuming the Bernoulli 
model for VaR exceptions with probabilities {0,07 0,08 0,09 0,10 0,04 0,03 0,02 
0,01}. 

In the literature, many methods of designing experiments to assess power 
properties of correlation tests are discussed. Some authors suggest that data on 
return process may be obtained form a normal distribution with a constant 
variance or from a t distribution with a constant number of degrees of freedom. 
Than, to match the alternative hypothesis, VaR forecasts should be obtained 
from models with higher or lower variance, from different distributions, from 
heteroscedastic models or from the historical simulation model [Lopez 1999]. 

Such a wide variety of models used in experimental design in the context of 
evaluating power of VaR tests stimulated the discussion in the literature that has 
led to some general postulates. According to them, the data generating process 
for the rate of return should satisfy some widely recognized facts about financial 
processes. Firstly, it should exhibit a great variation of the process from one 
point in time to the next. Moreover a persistence of the process, which results in 
clusters of low and high volatility, should be assumed. The above two postulates 
are satisfied by the family of GARCH models, which are therefore used to 
generate the trajectory of the return process. Then a variety of models may be 
used to get VaR estimates, so that the resulting VaR exceptions process would 
match the alternative hypothesis. In the simplest case, a homoscedastic VaR 
model is assumed. A more advanced approach is to include variation of the 
variance in the VaR model, assuming a false scheme for generating variance 
values. For instance variance values may come from a weighted moving average 
model or from the historical simulation model. Some authors also consider 
models that systematically under report variance. Typical levels of under 
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reporting range from 5% to 25% [Campbell 2005]. In a number of studies it is 
assumed that the true data generating process for the rate of return is a GARCH 
process and, following market practice, VaR estimates are obtained by the 
historical simulation method [Christoffersen 2004, Berkowitz, Christoffersen 
and Pelletier 2011]. 

Historical simulation used to generate VaR estimates in a simulation 
experiment does not, however, ensure a clear-cut interpretation of the results of 
the study. The technique of historical simulation, not being a theoretical model 
which parameters can be controlled, does not satisfy basic assumptions of Monte 
Carlo experiments and can only be treated as an estimation method.  
A presumption that, with the use of this method a model that matches the 
alternative hypothesis will be obtained is not equivalent to assuming  
a theoretical model of an experiment. Moreover, such a presumption is 
equivalent to a negative evaluation of historical simulation as a method that 
implies serial correlation in a resulting process. 

In the presented study, following stylized facts about financial time series, 
we assumed that the model used to assess the power properties of correlation 
tests should be generated in a way that guarantees volatility clustering. The 
return series was obtained from GARCH(1,1)-normal model with parameters 

0,000001  , 0,14   and 0,85  . Serial correlation in VaR exceptions 

was ensured by generating VaR estimates from the model that incorrectly 
described the mechanism behind volatility clustering. It was also assumed that 
the rate of VaR exceedances should be close to the assumed 5% in order to 
reduce the influence of unconditional coverage property on evaluation of 
correlation tests properties. In this paper we suggested an experiment where VaR 
forecasts are generated in 12 variants with the use of GARCH models with given 
parameters (Table 1). In 8 models of the experiment the parameters   and   

were modified in such a way that their sum was at a fixed level implying  
a constant unconditional variance of the process. In 4 of them the persistence of 
the process was increased by assuming higher values of   parameter and in 

subsequent 4 variants the procedure was reversed. In the last 4 models a higher 
value of   parameter was assumed, which gave models closer to  
a homoscedastic assumption. In order to ensure a constant unconditional 
variance the sum    was modified, leaving the relation between   and   

unchanged. VaR estimates implied by the null model and the 12 models 
following alternative hypothesis in correlation tests are presented in Figures 1 to 
13. The graphical presentation shows that the highest power should be observed 
in models 4, 8 and 12 as there is the largest discrepancy between the true and 
alternative model. Rejection rates in all experiments were calculated over 10000 
Monte Carlo trials for sample sizes 250,  500,...,1500T  . 
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Table 1. Parameters of simulation experiment used to assess power properties of correlation tests 

  α β   α β   α β 

Model 1 0.000001 0.105 0.885 Model 5 0.000001 0.19 0.8 Model 9 0.000005 0.133 0.817 

Model 2 0.000001 0.07 0.92 Model 6 0.000001 0.24 0.75 Model 10 0.00001 0.126 0.774 

Model 3 0.000001 0.035 0.955 Model 7 0.000001 0.29 0.7 Model 11 0.00005 0.07 0.43 

Model 4 0.000001 0 0.99 Model 8 0.000001 0.34 0.65 Model 12 0.0001 0 0 

Source: Author’s calculations. 
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Fig. 1. VaR estimates in the true data generating process 
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Fig. 2. VaR estimates in model 1  
of the simulation experiment 
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Fig. 3. VaR estimates in model 2  
of the simulation experiment 
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Fig. 4. VaR estimates in model 3  
of the simulation experiment 
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Fig. 5. VaR estimates in model 4  
of the simulation experiment 



Experimental Design in Evaluating VaR Forecasts 283

200 400 600 800 1000 1200

0.10

0.05

0.05

 
 

Fig. 6. VaR estimates in model 5  
of the simulation experiment 
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Fig. 7. VaR estimates in model 6  
of the simulation experiment 
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Fig. 8. VaR estimates in model 7  
of the simulation experiment 
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Fig. 9. VaR estimates in model 8  
of the simulation experiment 
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Fig. 10. VaR estimates in model 9  
of the simulation experiment 
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Fig. 11. VaR estimates in model 10  
of the simulation experiment 
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Fig. 12. VaR estimates in model 11  
of the simulation experiment 

200 400 600 800 1000 1200

0.05

0.05

 
 

Fig. 13. VaR estimates in model 12  
of the simulation experiment 
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IV. SIMULATION RESULTS 
 
For illustrative purposes, the proposed experiment was used to provide an 

analysis of properties of Kupiec [1995] and Markov [1998] tests, as most often 
used for evaluating VaR forecasts. These popular tests were compared to Ljung 
Box test of 1978 and a dynamic quantile test proposed by Engle and Mangianelli 
in 2004. The conducted experiment showed the largest difference between 
estimated size of the test and the assumed significance level for Markov test. 
Three other tests exhibited similar outcomes for similar series lengths, which 
were all lower than in case of Markov test. For series of over 500 observations  
a stable level of Kupiec, LB and DQ estimated test sizes was observed, close to 
the nominal value of 5%.  

 
Table 2. Size of the VaR tests 

Series length 
 

250 500 750 1000 1250 1500 
Test Kupca 0.0637 0.0597 0.0487 0.0573 0.0573 0.0573 
Test Markowa 0.0896 0.0950 0.0788 0.0913 0.0913 0.0913 
Test LB 0.0627 0.0593 0.0493 0.0513 0.0513 0.0513 
Test DQ 0.0700 0.0563 0.0550 0.0570 0.0570 0.0570 

Source: Author’s calculations. 
 
 

Table 3. Power of the Kupiec test 

Series length 
 

250 500 750 1000 1250 1500 
Model 1 0.298 0.461 0.655 0.748 0.841 0.901 
Model 2 0.537 0.765 0.924 0.968 0.989 0.997 
Model 3 0.743 0.935 0.992 0.999 1.000 1.000 
Model 4 0.879 0.988 1.000 1.000 1.000 1.000 
Model 5 0.132 0.221 0.265 0.352 0.363 0.483 
Model 6 0.372 0.663 0.810 0.913 0.944 0.981 
Model 7 0.762 0.974 0.998 1.000 1.000 1.000 
Model 8 0.985 1.000 1.000 1.000 1.000 1.000 

Source: Author’s calculations. 

 

The power of Kupiec test exceeded 70% for all sample sizes in experiments 
where the rate of exceedances was assumed at levels over 8% (models 3 and 4) 
or below 3% (models 7 and 8). For smaller differences, around 2 p.p., in rate of 
exceedances in comparison to the true data generating process (models 1 and 6), 
the sample size had large influence on the power of the test (Fig. 14-15). Power 
exceeding 70% was achieved for series of 1000 observations or longer.  
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Fig. 14. Power of the Kupiec test in models 1-4 

 
  Fig. 15. Power of the Kupiec test in models 5-8 

 
The power of Markov test estimated in the simulation study was at relatively 

low level in all variants of the experiment (Table 4). For models 4, 8 and 10, 
which exhibited largest discrepancies in comparison to the true model, in case of 
series shorter than 1000 observations, the power did not exceed 60% (Fig. 16-18). 

 
Table 4. Power of the Markov test 

Series length 
 

250 500 750 1000 1250 1500 
Model 1 0.108 0.101 0.094 0.091 0.096 0.104 
Model 2 0.145 0.132 0.139 0.137 0.150 0.169 
Model 3 0.213 0.214 0.242 0.257 0.299 0.332 
Model 4 0.393 0.499 0.591 0.654 0.707 0.763 
Model 5 0.074 0.067 0.066 0.069 0.093 0.113 
Model 6 0.072 0.065 0.071 0.099 0.144 0.173 
Model 7 0.072 0.072 0.085 0.154 0.214 0.256 
Model 8 0.076 0.081 0.129 0.233 0.307 0.361 
Model 9 0.119 0.098 0.092 0.095 0.102 0.104 
Model 10 0.152 0.126 0.141 0.149 0.149 0.155 
Model 11 0.246 0.307 0.389 0.442 0.489 0.539 
Model 12 0.388 0.497 0.590 0.654 0.708 0.763 

Source: Author’s calculations. 

 

  
Fig. 16. Power of the Markov test in models 1-4  Fig. 17. Power of the Markov test in models 5-8 
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Fig. 18. Power of the Markov test in models 9-12 

 
In experiments where parameters β (models 1-4) and   (models 9-12) were 

increased in order to obtain higher variance persistence or to move towards a 
homoscedastic model, LB test much outperformed Markov test. (Table 5). In 
models 4 and 12, for series of 500 observations the estimated power was close to 
70%, while with extending the series the power approached 96% (Fig. 19-21). 

All conducted experiments showed superiority of the dynamic quantile test 
of Engle and Mangianelli over other correlation tests in terms of statistical 
properties (Table 6). This was especially noticeable in the experiment where the 
value of   parameter was increased, decreasing at the same time the variance 
persistence (models 5-8). For other tests the power estimated in experiment  
8 did not exceed 40%, whereas in case of DQ test it reached the level of over 
50% for the series of 500 observations and increased to over 95% for longer 
series. The comparison of simulation results for different sample sizes gave the 
observation that the power of DQ test grows rapidly with lengthening series over 
250 observations (Fig. 22-24). 

 
Table 5. Power of the LB test 

Series length 
 

250 500 750 1000 1250 1500 
Model 1 0.092 0.103 0.096 0.102 0.101 0.117 
Model 2 0.165 0.197 0.218 0.248 0.268 0.299 
Model 3 0.285 0.382 0.485 0.559 0.619 0.678 
Model 4 0.456 0.696 0.817 0.881 0.933 0.958 
Model 5 0.032 0.032 0.026 0.029 0.026 0.031 
Model 6 0.022 0.024 0.022 0.030 0.037 0.048 
Model 7 0.018 0.023 0.025 0.041 0.061 0.086 
Model 8 0.020 0.024 0.037 0.062 0.110 0.145 
Model 9 0.132 0.144 0.159 0.175 0.182 0.209 
Model 10 0.176 0.240 0.295 0.339 0.371 0.434 
Model 11 0.356 0.597 0.724 0.810 0.881 0.916 
Model 12 0.452 0.694 0.816 0.880 0.934 0.958 

Source: Author’s calculations. 



Experimental Design in Evaluating VaR Forecasts 287

 
Fig. 19. Power of the LB test in models 1-4 

 
Fig. 20. Power of the LB test in models 5-8 

 

 
Fig. 21. Power of the LB test in models 9-12 

 
 

Table 6. Power of the DQ test 

Series length 
 

250 500 750 1000 1250 1500 
Model 1 0.078 0.073 0.070 0.071 0.076 0.089 
Model 2 0.110 0.134 0.163 0.214 0.266 0.320 
Model 3 0.196 0.335 0.507 0.653 0.768 0.846 
Model 4 0.373 0.873 0.962 0.992 0.997 0.999 
Model 5 0.094 0.095 0.099 0.117 0.133 0.146 
Model 6 0.154 0.208 0.261 0.336 0.396 0.457 
Model 7 0.240 0.373 0.501 0.623 0.711 0.785 
Model 8 0.356 0.572 0.729 0.841 0.908 0.953 
Model 9 0.084 0.208 0.361 0.508 0.630 0.718 
Model 10 0.146 0.479 0.711 0.846 0.925 0.957 
Model 11 0.324 0.844 0.959 0.990 0.997 0.999 
Model 12 0.326 0.836 0.944 0.985 0.996 0.998 

Source: Author’s calculations. 
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Fig. 22. Power of the DQ test in models 1-4 

 
Fig. 23. Power of the DQ test in models 5-8 

 
 

 
Fig. 24. Power of the DQ test in models 9-12 

 
 

V. SUMMARY AND CONCLUSIONS 
 

In the context of growing popularity of risk valuation methods based on VaR 
measure, there is a need to assess statistical properties of tests used to compare 
and evaluate alternative VaR models. Since the presence of clusters in VaR 
exceptions bears substantial risk in business management, a group of correlation 
tests develops very dynamically. In the literature a number of alternative 
approaches to designing experiments used to evaluate power properties of 
correlation tests are presented. In this paper we provided a review of such 
simulation experiments and presented a discussion on them in the context of the 
assumptions of Monte Carlo method. We also demonstrated own proposition of 
an experiment. 

We suggested an experiment where it was assumed that the return series is 
generated by the GARCH-normal model. Then, to obtain VaR estimates 
controlled disturbances were introduced to the values of model parameters, 
which resulted in VaR exceptions series following the alternative hypothesis. In 
each experiment the unconditional variance of the process was fixed at  
a constant level while the parameters implying lower or higher persistence of the 
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variance and its fluctuations in time were modified. As an extreme case,  
a homoscedastic model was considered, which gave the largest discrepancy in 
comparison to the true data generating process.  

As a complementary study, the proposed experiment was used to provide an 
analysis of properties of Kupiec test and three correlation tests, namely Markov, 
Ljung Box and a dynamic quantile test of Engle and Mangianelli. The outcomes 
of the conducted experiment showed that Markov test of 1998, being the most 
popular tool for detecting serial correlation in VaR exceptions, exhibited the 
worst statistical properties, both in terms of size and power. According to the 
results of the study, Markov test was outperformed by traditionally applied in 
time series analysis Ljung Box test of 1978 and by DQ test of 2004. The lowest 
power of the tests was generally observed in models of the experiment where 
variance persistence was decreased in comparison to the true data generating 
process. In such situations DQ test gave better results than all other tests. 
Superiority of this test was also confirmed by the fast increase in the test power 
with lengthening the time series. 
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Marta Małecka 
 

PROJEKTOWANIE EKSPERYMENTÓW SYMULACYJNYCH  
W OCENIE PROGNOZ VAR 

 
W ślad za dynamicznym rozwojem metod estymacji VaR, począwszy od lat 

dziewięćdziesiątych ubiegłego wieku, w literaturze pojawiła się obszerna dyskusja dotycząca 
możliwości testowania statystycznego w kontekście oceny modeli VaR. Z jednej strony powstało 
wiele prac odnoszących się do własności statystycznych dwóch najpopularniejszych testów – testu 
Kupca z 1995 roku, który bada udział przekroczeń VaR w szeregu i testu autokorelacji 
przekroczeń VaR Christoffersena z 1998 roku. Z drugiej strony istnieje bogata literatura dotycząca 
zastosowań rozważanych testów do empirycznych szeregów czasowych. W niniejszej pracy 
skoncentrowano się na analizie własności testów autokorelacji i porównano test Christoffersena do 
testów Ljunga Boxa z 1978 roku i testu Engla i Mangianelli’ego z 2004. Celem pracy było 
przedstawienie przeglądu eksperymentów symulacyjnych wykorzystywanych do badania mocy 
testów autokorelacji przekroczeń VaR w odniesieniu do założeń metody Monte Carlo oraz 
zaprezentowanie własnej propozycji eksperymentu. 


