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STEPWISE MULTIPLE TESTS PROCEDURES 
FOR DISCRETE DISTRIBUTIONS 

 
 Abstract. We presented some properties of new procedures of multiple hypotheses testing for 
discrete distributions. We choose the new procedure stepwise TWWk, based on Tarone, Westfall 
and Welfinger ideas. We compare this procedure to multiple testing procedures like T*, TH* and 
others and we show the power advantage of this procedure. 
 Key words: multiple procedure, stepwise testing, discrete distribution. 
 
 

I. INTRODUCTION 
 
Multiple testing problem involves a family of hypotheses nHH 001 ...,,  

(alternative nHH 111 ...,, ). The hypotheses are tested simultaneously and a multiple 
level α has to be controlled. A ”valid” procedure to solve this problem will 
maintain strong control of the familywise error rate (FEW) at its nominal level  
α (i. e. the probability of rejecting at least one true )...,,1(0 niH i  is at most  

α, no matter which and how many iH0  are true (Hochberg and Tamhane, 1987). 
A simple way to solve the question is to use the Bonferroni method. This method 
rejects all hypotheses with p-values less than or equal to ./ n  The Bonferroni 
method is conservative when the p-values are uniformly distributed, since it 
ignores correlation between the p-values. It does not make allowance for 
situations where one of the null hypotheses are clearly false. In addition, the 
Bonferroni method may become conservative due to discreteness of the 
sampling distribution, and this disadvantage is potentially worse than the two 
disadvantages mentioned earlier. 

The existing and new multiple hypotheses procedures for discrete distribution 
are critically reviewed and compared to each other, for its power and average 
power. 

Gart et al. (1979) note that for discrete data statistics, there actually exists the 
smallest attainable p-value )...,,1(* nii   for each hypothesis. Thus, the number 
of significance tests could be reduced by eliminating those tests, for which the 
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smallest p-values is higher than ).( *  i  Tarone (1990) improved this idea 

by noting that even for hypotheses with   */ in  rejection may never be 

possible. For each integer k. define ):( *   ik kiR  and |,|)( KRkm   where  

α is the nominal significance level and *
i  is the minimum achievable level at 

site i. Thus )1(m  is the number of hypotheses that can be rejected at the nominal 

level α. If )1(m  > 1, a correction for multiple comparisons should be considered. 

For any integer k < )1(m , )()1( kmkm   and )1()]1([ mmm   (Tarone, 

1990), thus if the correction factor is )1(m , there may exist iH0  such that its 

)1(/* mi   , and one cannot reject those iH0 , whatever their p-value will be. 

By excluding those iH0 ’s, the correction factor can be reduced until the smallest 

number k such that kkm )(  is reached. Define K to be the smallest value of k 

such that kkm )( . This reduction will only be effective for discrete data, since 

in continuous data ,)(...)2()1( nnmmm   so that, so that nK   and the 

usual Bonferroni method is applied. The values K and Rk can be determined 
using only the information in the marginal total. Tarone’s procedure )(T  rejects 

iH0 if and only if iH0  is contained in Rk and ,/ Kpi   where pi is the 

observed significance level at hypothesis i. 
Unfortunately, T lacks alpha consistency )(AC  (Roth, 1999). Hypothesis that 

is accepted at a gives α level may be rejected at a lower α level. Roth (1999) 
developed procedure T* that modifies AC while simultaneously increasing the 
power. T* maintains strong control of FWE . The procedure rejects all 

iH0 ’s such that */ Kpi   where })(|]1,0[{ xxmxM   and 

}inf{* MxK  . A simple way to construct T* in practice will be to arrange the 

smallest attainable p-value in an increasing manner *
)(

*
)1( ... n  . If KKm )(  

then KK *  else *
)(/* KK  . T* does not stand the FWE  criterion is 

used, arises from those cases where .**)( KKm   

Westfall and Wolfinger (WW, 1997) suggested a different approach based 
on the full set of possible values for each Pi, rather than just on the minimum 
attainable p-values *

i  for each Pi. They defined adjusted p-values )( '
jp  as 

)Pr(min'
jij pPp   where Pi refers to the random p-values considered under 

their null hypotheses. If we define )...,,1( nipi   as the observed p-values of 

given tests, given that the distribution of the test statistics is discrete, the 
observed values of the random p-values Pi will be },...,1:{ iit mtp   (mi is the 

maximum availed value for the ith test statistic) where )Pr( iti pP  . The 
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adjusted value, '
jp  will be the probability that a p-value as small as pj will be 

observed in the entire study when all null hypotheses are true. 
 Using discreteness 
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For each hypothesis, the procedure computes its adjusted p-value and 

compares it to FWE . The latter procedure assumes independence between 
the tests, thus making the method rather conservative, although less than the 
Bonferroni method. In case of dependence, one way to bind the true values of 

'
jp , will be to use the Bonferroni inequality. (The discrete Bonferroni adjusted 

p-values are }.1,min{
1 )(

'  


n

i jitj Pp  Another way, probably preferable, will be 

to calculate the exact )min( iP  distribution either exactly or using Monte Carlo 

(MC) resampling method. 
We propose a new method, TWWk, FWE and incorporates the discreteness of 

the distribution. This method will use WW on the set defined by Tk,. TWWk, 
rejects }|{ '

0  iki pRH  where ),Pr(min'
jii pPp   }|{ 0 kj RHj  . This 

method controls the FWE . 
Some of the methods are universally more powerful than others, some are not 

universally so; 
Claim 1. T* is universally more powerful than T (Roth, 1999). 
Claim 2. Tk is universally more powerful than T (Roth, 1999). 
Claim 3. None of Tk and T* is universally more powerful than the other (Roth, 

1999). 
Claim 4. WW method is universally more powerful than T*. 
Claim 5. TWWk, is universally more powerful than Tk. 
Claim 6. None of WW, and TWWk/Tk , is universally more powerful than the 

others. 
 
 

II. STEPWISE PROCEDURES 
 
Stepwise methods provide an increase of the power of multiple testing 

methods. These techniques are not unique to discrete distributions, but need to 
be discussed since they improve the power of the multiple hypotheses tests. 
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The procedure suggested by WW can easily be adapted to stepwise 
analysis. The p-values are adjusted using the step down technique, by adjusting 
the smallest p-value according to min (Pi) distribution. The second smallest  
p-value is adjusted according to the min (Pi) distribution of all the variables 
excluding the variable whose unadjusted p-value was smallest, and so on. 
Hommel and Krummenauer (1998) step down procedure, is similar to Holm’s 
(1979) Bonferroni test, but incorporates T*. This procedure was named TH*: 
(1) Set },...,1{ nI  , 

(2) For j = 1, …, I define }/|{),( * jIijm iI   , number of hypotheses 

with indices Ii  that can be rejected at level j/ . 

},(|...,,1min()( jjmIjK II    and )(/)(  II Kb  . 

(3) For Ii  reject iH0  if )(Ii bp   for some  0 . (practically apply T* 

on I). 
(4) Let J = index set of all hypotheses that have been rejected in step 3. 
(5) If J is empty stop otherwise set I = I – J and return to step 2. 
 Roth (1999) described a step up Procedure R based on Hochberg’s 
procedure (H) (1998). Procedure R is composed of two procedures: Procedure L 
(that is closely related to H), and a component Procedure C. R rejects H0i if it 
was rejected by either L or C. 
 Procedure L 
(1) Accept the entire pi’s that are not in )|{ *

01   iiHR . 

(2) Order the pi’s in R1 from highest to lowest ))1(()1( ...,, mpp  . 

(3) Let },/|{ 1)()( RpjpjQ jj    define }min{ Qjq  . 

(4) Reject all of the 10 RH i   such that qpi / . 

 Procedure C 
(1) Consider only the ki RH 0  order the pi’s from highest to lowest by 

))(()1( ...,, kmpp   if KKm )(  than 0)( iq  for KKmI ...,),(  (K – as 

defined in 1 above). 

(2) For Kj ,...,1  define  .}|{)}({max 0
*

kjiij RRHpjqp   

(3) Let }/|{ * jpjW j   define }min{ Wjw  . 

(4) Reject H0i if wpi / . 

R is valid if H is valid for all subsets of R1 of size *q  is defined as the larger 

of )(Km  and 1|1...,,1{}0max{{  ii RRki  is not empty}}. 

 
A newly proposed stepwise method 
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Using the mechanisms described in Section 2, one can apply W&W stepwise 
method to the group of p-values with a hypothesis that belongs only to Rk. This 
method has properties similar to those of TWWk (lack of AC, universally more 
powerful than Tk and T), but it has a higher power, since we use a stepwise 
method rather than a single step. 
 
 Comparison between stepwise multiple hypothesis methods 

Comparison between single step methods and stepwise methods was not 
performed since matching stepwise method, which is more powerful. However, 
occasionally, one type of single step method is more powerful than a stepwise 
method. 
Claim 7. Stepwise WW method is universally more powerful than TH*. 
Claim 8. R/RMOD, WW stepwise and stepwise TWWk are not universally 

more powerful than each other. 
Claim 9. R/RMOD and WW stepwise are not universally more powerful than 

Tk / TWWk and vice versa. 
Claim 10. None of Tk / TWWk and TH* are universally more powerful than each 

other. 
Claim 11. Stepwise TWWk is not universally more powerful than either TH* or T*. 
 
 

III. APPLICATIONS OF THE MULTIPLE TESTING PROCEDURES 
 
 Case 1 – animal carcinogenicity test 
 Several animal organs and tissues were examined for the presence of tumour 
caused by a test compound as in Tarone (1990). This was a three-arm study: 
control (0), low dose (1), and high dose (2). The groups consisted of equally 
spaces doses. The number of observed tumours was recorded for each type 
group (animal (mouse, rat), gender (male, female), and tumour site). A trend 
statistic of the following form was defined 210 210  jjjj XXXT  were Xij 

are the number of observed tumours at dose group i, and type group j. Upper-
tailed p-values were computed for each type group, using Fisher’s exact 
statistics. 

All methods rejected both hypotheses {male mouse liver, female mouse liver} 
at the 0.01 level. At the 0.1 significance value, all methods rejected the {male rat 
kidney, male mouse liver, female mouse liver} hypotheses. None of the methods 
tested, including the new ones, was more powerful than the others testing the 
hypotheses in this case study. 
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 Case 2 – relationship between DVT and three genetic factors 
This case study tested the relationship between deep vein thrombosis (DVT) 

and three different genetic factors (Fact V, Fact II and MTHFR) (Salomon et 
al.,1999). The population was divided into healthy controls and those with DVT. 
Each subject was tested for the presence of one of the three genetic factors. The 
subjects were then divided into one of the eight available genetic groups (a genetic 
group is built of the combination of presence or absence of all the three factors). 

All methods, except for RMOD and CR   rejected the same hypotheses for 
all levels of significance (Fact V, Fact V + Fact II, and Fact V + MTHFR). 
RMOD and CR   rejected these three hypotheses for the 0.01 and 0.05 
significance levels, and rejected the “All 3 Factors” hypothesis in the 0.1 
significance level. CR   and RMOD was deemed more powerful than all other 
methods for this case. 

This simulation is based on some samples of the animal experiment presented 
in Case 1. The samples differed by the weights given to different hypotheses 

using extended multinomial hyper-geometric distribution ,
1
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jssjj ppppz 2121 / , zj is the extension of the odds ratio to N2  tables, zj stands 

for the ratio between each group and the control group. The number c is 
determined by the condition that the sum over its range is unity). The difference 
between samples was created by two-fold increase weight of the low dose, and 
the 2.5-fold increase weight of the high dose. Each sample consisted of 10,000 
resample data sets, and was tested using four multiple comparison tests 
(R/RMOD, W&W, stepwise TWWk), and at three different significance level 
(0.01, 0.05, 0.1). 
 
 The dependent case of extended multinomial hyper-geometric distribution 

The data for this simulation was derived from Case 2.  
The study looks at the odds ratio for developing DVT by each of the seven 

genetic groups vs. the group that carries no genetic risk factors. We applied five 
tests to this simulation: stepwise W&W, stepwise TTWk, R, EMOD, and R + C. 
The p-values were calculated as one-sided test from the multinomial hyper-
geometric distribution. The significance level was set at 0.05. 
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KROCZĄCE PROCEDURY TESTÓW WIELOKROTNYCH  
DLA ROZKŁADÓW DYSKRETNYCH 

 
Zaproponowano tutaj nowe kroczące procedury wielokrotnego testowania w przypadku 

danych pochodzących z populacji o rozkładzie dyskretnym. Wybierając procedurę TWWk, opartą 
na badaniach Tarone’a, Westfalla i Welfingera porównano tę procedurę do innych procedur 
testowania wielokrotnego (m. in. T*, TH*) i pokazano większą moc tej procedury. 


