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Abstract. The original HINoV method (Carmone et al., 1999 ) is not robust to the presence 
of correlated unimodal and uniform variables among noisy variables (e.g. Korzeniewski, 2012). 
Moreover, HINoV can be applied only to a single cluster structure analysis. In the article, 
a modification is proposed consisting in grouping all variables (separately for each reference 
variable) into two classes. One of the classes consists of variables similar to the reference variable, 
the other consists of variables which are “less similar”. Similarity between two variables is based 
on the similarity of the data set division into an established number of clusters (from 2 to 10) 
measured with the modified Rand index. We arrive at a zero-one matrix describing relations 
between every pair of variables. Then, a set of variables creating the same (the strongest) cluster 
structure is selected by means of a criterion optimizing the matrix division into four blocks. After 
completing the first stage selection one can search another cluster structure applying the same 
procedure to the set of remaining variables. The modification is assessed in a broad experiment 
based on 2250 data sets generated from the mixtures of normal distribution. 
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I. INTRODUCTION 
 

It is widely acknowledged that not all variables characterising data set 
observations contribute the same weight to the data set cluster structure. Some 
are more important than others (true variables), some are less important and 
some may be an obstacle (masking variables) in detecting the data set cluster 
structure. In recent years quite a number of methods designed with the aim of 
choosing the best subset of variables describing the data set cluster structure was 
proposed. The proposal of HINoV (Carmone et al., 1999) is by some researches 
considered a turning point of the task of feature selection in cluster analysis. The 
method presented in the original article is not a strictly statistical method 
because it is based on visual assessment of the scree plot, but in this publication 
the authors criticized all formerly developed methods. Moreover, HINoV, 
although very imprecise, gained wide recognition among statistical community 
and even some modifications were proposed e.g. Brusco and Cradit, (2001), 
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Steinley and Brusco M. (2007). No one, however, has made an effort to 
modify HINoV with the aim to analyse multiple cluster structures. In general, 
there are practically no methods of variable selection in the case of multiple 
cluster structures. Probably, the only work which addresses this problem was 
written by Friedman and Meulman (2004), but so far, their method was not 
implemented for practical use. The idea of the method presented in this article 
consists in replacing the TOPRI indicator used in HINoV by similar indicator 
computed separately for each variable. In consequence, in the next stage, we 
have to divide the matrix of variables similarities into blocks and pick up some 
variables which will represent the first set of “similar” variables. We repeat these 
stages until all variables are grouped into “similar” subsets. In the final stage we 
have to make a decision for each of the subjects on whether to qualify it as  
a subset creating cluster structure or not. A criterion used for that purpose is 
proposed. The details of the method are presented in the second chapter with the 
analysis of the method efficiency in the following chapters. 

 
 

II HINOV MODIFICATION 
 
 While working out new methods of variable selection in the case of 

possible multiple cluster structures we have to pay attention to the following 
four main targets: 

 possible existence of many cluster structures (main target); 
 robustness to the existence of correlated unimodal or uniform variables; 
 robustness to the number of noisy variables being large in comparison 

with the number of variables creating cluster structures 
 robustness to the unknown number of clusters. 
HINoV works in the following way. For each variable v we group data using 

e.g. k-means method (k has to be specified). Then we compute the  vuR ,  Rand 

index which is a measure of similarity of the two variables for which it is 
computed. Subsequently, we rank all variables according to the TOPRI indicator 
defined as: 

 

  
   




vu

vuRIuTOPRI ,   (1) 

 
The variables with highest values of indicator (1) are interpreted as the ones 

having strongest connection with the existing cluster structure. Such approach 
has a number of drawbacks (compare Korzeniewski, 2012) and obviously cannot 
be used to detect multiple cluster structures. 
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In view of the second and third target mentioned above we propose to get rid 
of the summation in formula (1), because, if noisy variables are numerous and 
correlated then it always results in high values of TOPRI for variables which 
may not create any cluster structure. Instead we will assess the similarity 

 vuRI ,  of two variables with the biggest of the Rand index values for the 

range of possible numbers of clusters from 2 to 10. Thus 
 
       vukRIvuRI

k
,,max,

10,...,2
 . (2) 

 
In the next step we arrange all dd   Rand indices in the form of a matrix  

 

   ijRR    (3) 

 
where ijR  is the corrected Rand index between variables i and j. In order to 

group variables into subsets of more than two similar variables we will apply  
a sequential procedure. One step of this procedure consists in selecting subset  
A of variables which maximizes criterion 
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Sequential application requires elimination of variables belonging to the 

subsets selected in steps prior to current step. After we have grouped all 
variables into similar subsets we have to make a decision for each subject 
whether to consider it as creating cluster structure or not. We propose a simple 
criterion which turned out to be quite effective in former studies (Korzeniewski, 
2012). The criterion may be easily formulated verbally as the Rand index of the 
consistency of the data set division into two clusters with the division into two 
clusters of the data set subset consisting of the smaller cluster and 1/3 of the 
bigger cluster. We will denote the criterion with 
 

   AR .  (5) 

 
The idea of criterion (5) is presented in Figure 1 and Figure 2. If there is 

a cluster structure (Fig. 1) the first division into two clusters (the bigger 
represented with dark bright squares and the smaller represented with circles) 
should be consistent with the division into two clusters of the subset consisting 
of the smaller cluster (circles) and the closest 1/3 (dark squares) of the bigger 
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cluster. If there is no cluster structure (Fig. 2) there is no reason for the second 
division to break up the subset consisting of circles and dark squares in the way 
similar to the first division. In order to find out the value of criterion (5) one has 
to decide on the grouping method and the “depth” to which the divisions will be 
carried out. The depth bigger than 1 is necessary because if we try to divide the 
data set only once we will not get a big value of criterion (5) for the cluster 
structures of 6 or 7 (or more) clusters – the division of many clusters into two 
subset does not have to return clear “division gap”. We used depth equal to 2 
which has simple interpretation i.e. we calculate criterion (5) for the (first stage) 
division of the whole data set and (more deeply) we calculated criterion (5) for 
the division of each of the two clusters resulting from the first stage division. 
 

 
Fig. 1. Graphical representation of criterion (5) in the case of cluster structure 

 

 
Fig. 2. Graphical representation of criterion (5) in the case without cluster structure 

 
 

Taking into account all improvements mentioned above we may try the 
following modification: 

Step 1. Group all data set observations independently for every variable into 
2, 3, …, 10 clusters. 

Step 2. Find matrix R according to formula (3). 
Step 3. Find subset A of variables which maximizes criterion (4) from all 

possible subsets of the set of all variables. 
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Step 4. Find the value of  AR  for depth of division equal to 2, i.e. the 
biggest of the three Rand indices measuring the data set first stage division into 
two clusters and the likewise divisions into two clusters of each of the two 
clusters from the first stage division. 

Step 5. If there are some variables not included in any of the sets A found so 
far, go to step 3. 

Step 6. The sets A which have   4.0AR  qualify as sets creating cluster 
structure. 

In the efficiency investigation from the following parts, in step 1, we will 
use standard k-means grouping with random choice of starting points, repeated 
100 times with the minimal between clusters variance criterion to choose the 
final grouping. The distance measure will be the Euclidean distance. In step 2 we 
will use the corrected Rand index as described e.g. in Gatnar, Walesiak (2004). 
 
 

III EFFICIENCY INVESTIGATION 
 

In order to assess the efficiency of our modification we generated cluster 
structures according to the Steinley and Henson’s OCLUS algorithm (2005) 
based on generating each cluster from the standard normal distribution (on each 
dimension). We generated cluster structures consisting of 200 data items, 
differing with respect to the following factors. 

The first factor, the number of clusters in the data set was examined at five 
levels – 2, 3, 4, 6 and 8 clusters. 

The second factor, number of items in clusters was examined at three levels: 
(a) an equal number of objects in each cluster; (b) 10% of objects and (c) 60% of 
objects in one cluster and the remaining objects equally divided across the 
remaining clusters. 

The third factor, the number of true variables was tested at three levels – 2, 4 
and 6. 

The fourth factor, the probability of overlap between clusters on each true 
variable was tested at five levels – 0, 0.1, 0.2, 0.3, 0.4. The overlap was of the 
“chain” type (see Steinley and Henson, 2005) and so, on each dimension, there 
were k-1 pairs of overlapping clusters (k – number of clusters). 

The fifth factor, the degree of within-cluster correlation had two variants: (a) 
the covariance matrix for each cluster was the identity matrix ; (b) each cluster 
had the same covariance matrix with ones on the diagonal and the off-diagonal 
elements drawn from a continuous distribution on the interval [0.3; 0.8]. 

The number of combinations is equal to 450, repeated 5 times results in 
2250 cluster structures. 

There is some ambiguity in assessing the efficiency in the case of multiple 
cluster structures. We used the following approach. All cluster structures were 
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kept and to every structure another was drawn randomly from all 2250 
structures. In this way we got fairly smooth distribution of cluster structure 
types. Then, to every two-fold (i.e. consisting of two structures) cluster structure 
four noisy variables were attached: two independent uniform distributions on 
interval [0; 20] and two normal distribution with zero mean and covariance 
matrix with ones on the diagonal and 0.5 or 0.75 (randomly chosen) off the 
diagonal. Thus, every cluster structure was masked with four variables. 

Standard measures usually used comprise two criteria (compare Steinley and 
Brusco, 2008): recall - the number of relevant variables in the chosen subset of 
variables divided by the total number of relevant variables and precision – the 
number of relevant variables in the chosen subset of variables divided by the 
total number of variables selected. Recall and precision are computed for every 
data set and the arithmetic means of these two measures are computed for all 
data sets. However, it is not clear how to use these measures in the presence of 
several cluster structures. We applied the following approach. All selected 
subsets of variables were ordered decreasingly with respect to their strength (i.e. 
the  AR  value), one-variable subsets were eliminated. From this sequence only 

the two first subsets of variables were considered (on condition that their 
strengths were greater than 0.4). For each of the two known cluster structures 
best variants of precision and recall (obtained from the two strongest cluster 
structures) were found. The arithmetic means of these measures were 
subsequently computed as the final measure. An alternative approach might be 
considering all cluster structures with strength exceeding 0.4 (as those are 
considered structures detected in our method’s formulation), however, that 
would require additional efficiency measures apart from recall and precision. 
 

IV RESULTS AND CONCLUSIONS 
 

In Table 1 the final means of recall (upper numbers in each row) and 
precision (lower numbers) are presented. The numbers from the table and the 
overall performance allow to draw the following conclusions. 
 
 

Table 1. Recall and precision of the new method with respect to cluster structure overlap 

 Overlap 
0 

Overlap 
0,1 

Overlap 
0,2 

Overlap 
0,3 

Overlap 
0,4 

No correlation within 
clusters 

1.0 
1.0 

0.63 
0.71 

0.57 
0.66 

0.42 
0.53 

0.43 
0.55 

Correlation within 
clusters 

1.0 
1.0 

0.59 
0.70 

0.56 
0.65 

0.41 
0.48 

0.40 
0.50 

Source: own investigations. 
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1. The method proposed is strictly statistical i.e. it is based on numerical 
measure and not on e.g. visual examination. 

2. The method results are good in the cases of distinct cluster structures 
(overlap equal to 0 or 0.1) and worse for weaker structures, however, the results 
cannot be compared with other researches as no investigation of multiple cluster 
structures is known to the author. 

3. The method is not feasible for data sets described by a large number of 
variables since we have to check (step 3) all possible subsets of variables, 
although checking amounts only to computing sums of a couple of dozen real 
numbers which is a fast procedure. This drawback does not seem to be very vital 
as for cluster structures created by more than 10 variables and not so distinct as 
to be analysed on marginal histograms, the analysis of individual variables is of 
limited use anyway. 

4. The method proposed may be modified with respect e.g. to the algorithm 
of selecting subsets of „similar” variables. 

5. The method proposed may be modified for the need of the most general 
formulation of cluster analysis variable selection problem i.e. the case of 
multiple cluster structures created by sets of variables not necessarily disjoint. 
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MODYFIKACJA METODY HINOV SELEKCJI ZMIENNYCH W ANALIZIE 
WIELOKROTNYCH STRUKTUR SKUPIEŃ 

 
Oryginalna metoda HINoV jest zupełnie nieodporna na występowanie wśród zmiennych 

zanieczyszczających strukturę skupień zmiennych skorelowanych jednomodalnych lub 
równomiernych. Ponadto HINoV można stosować tylko w przypadku jednej struktury skupień.  
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W referacie zaproponowana jest modyfikacja polegająca na tym, by, oddzielnie, dla każdej 
ustalonej zmiennej, grupować zmienne w dwie klasy zmiennych podobnych i niepodobnych do 
niej w sensie podobieństwa podziału zbioru danych na daną liczbę skupień (od 2 do 10). 
Otrzymujemy wówczas macierz zerojedynkową opisującą związki pomiędzy każdą parą 
zmiennych. Następnie, podzbiór zmiennych tworzących tę samą (najsilniejszą) strukturę skupień 
wybierany jest za pomocą kryterium optymalizującego podział macierzy na cztery bloki. Po 
wybraniu zmiennych tworzących jedną strukturę skupień można, w dalszym kroku, wybierać 
zmienne tworzące następną strukturę skupień spośród zmiennych, które nie zostały wybrane 
w pierwszym kroku. W celu selekcji właściwego bloku macierzy stosowane jest kryterium 
stabilności podziału zbioru danych oparte na wielokrotnym losowaniu połowy zbioru  
i porównywaniu podziałów otrzymanych przy pomocy metody k-średnich. Modyfikacja oceniona 
jest w obszernym eksperymencie symulacyjnym na 2250 zbiorach danych wygenerowanych 
w postaci mieszanin rozkładów normalnych. 


