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Abstract. Optimal chemical and spring balance weighing designs for estimation total weight 

are considered. In this paper we study weighing designs in which the errors are non-positive corre-
lated and have equal variances. A lower bound for the variance of estimated total weight is at-
tained and the necessary and sufficient conditions for the attainability of this lower bound are 
given. There are given construction methods and a few examples of the design matrices. 
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I. INTRODUCTION 
 
We consider the standard Gauss-Markov model eXwy  , where y  is an 
1n  vector of observations, X  is the pn  design matrix, w  is a 1p  vector 

of unknown parameters and e  is an 1n  vector of random errors with   n0e E  

and   Ge 2Cov , where n0  is vector of zeros, 2  is the constant variance of 

errors, G  is the nn  symmetric positive definite matrix of known elements. 
There are two types of weighing designs, chemical balance weighing design and 
spring balance weighing design. In a chemical balance weighing design each 
weighing measures the difference between the total weight of objects put on one 
of the two pans and the total weight of those on the other pan. In a spring bal-
ance weighing design, each observation measures the total weight of the objects 
put on the balance. 

For a chemical balance weighing design, X  is an pn  matrix with  ji, -th 

entry equal to –1, 1 or 0 depending upon whether in the i -th weighing j -th 
object is put on the left pan, right pan or is not present, while for a spring bal-
ance weighing design, each entry of X  is 0 or 1, indicating whether a particular 
object is absent or present in each weighing. 
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Any weighing design is nonsingular if the matrix XGX 1'   is nonsingular. It is 
obvious that G  is the symmetric positive definite matrix then any weighing design is 
nonsingular if and only if the matrix XX'  is nonsingular and then all parameters are 
estimable. Even if XGX 1'   is nonsingular, there exists a design which estimates the 
total weight with a smaller variance than the design which is most efficient for the 
estimation of individual weights. The examples of such designs are available in litera-
ture, see Banerjee (1975), Chacko and Dey (1978). When XGX 1'   is singular, al-
though unknown measurements off all objects are not estimable, but some linear func-
tions of w  may be estimable. One of the estimable function is the total weight of ob-

jects, i.e. ,' w1 p  where p1  denotes the 1p  vector of ones. Some examples of opti-

mal singular weighing design for estimated total weight are given in Dey and Gupta 
(1977), Ceranka and Katulska (1986, 1990, 1996), Kageyama (1988, 1990), Katulska 
(1989). The total weight will be estimable if and only if there exists an 1n  vector  

a  such that .''
p1Xa   The condition is equivalent to the   ,'1'1''

pp 1XGXXGX1   

where   XGX 1'  denotes a generalized inverse (g-inverse) of ,1' XGX   i.e. 

  .1'1'1'1' XGXXGXXGXXGX    

It is therefore assumed that )( pk   objects can be weighted simultaneously 

in each weighing. Under this restriction, a lower bound for the variance of the 
estimated total weight is obtained using a weighing design permitting the estima-
tion of total weight. Design for which the lower bound is attainable have been 
called optimum. 

In this paper we present the estimation of total weight of objects in the 
weighing design assuming that the errors have the same variances and they are 
non-positive correlated, i.e. for the random vector of errors ,e    ,2Ge Cov  

where 
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For the case ,nIG   Banerjee (1975) and Dey and Gupta (1977) present the 
problem related to the spring balance weighing designs. For some patterns of 

  Ge 2Cov  the conditions determining optimal design for estimating total 

weight were given in Katulska (1989). Similarly for the case ,nIG   Banerjee 
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(1975) and Pukelsheim (1983) produce the issue related to the chemical balance 
weighing designs. Moreover, for the case pn  , Kageyama (1990) gives condi-
tions to determine the optimal design for estimating the total weight. For some 
special forms of   Ge 2Cov , the conditions of estimation of the total weight 
were presented in Ceranka and Katulska (1990, 1996). 
 
 

II. THE LOWER BOUND OF VARIANCE 
 

Let pnD  denote the class of all pn  (–1,0,1)-matrices such that 

1. Each row of matrix pnDX  contains at most )( pk   elements different 

from zero, i.e. pkkfa iii  , ni ,...,2,1 , where ,0ia  ,0if  ia  de-

notes the number of 1ijx  and if  denotes the number of .1ijx  

2. For every pnDX  the total weight is estimable. 

Let pn
s

pn   DD  denote the subclass of matrices for which 0ia  and 

0if  for each ni ,...,2,1  and let pn
c

pn   DD  denote the subclass of matrices 

for which 1ia  and 1if  for each ni ,...,2,1 . If s
pnDX  then X  is the 

matrix of spring balance weighing design, while c
pnDX  then X  is the matrix 

of chemical balance weighing design. 
 

The following lemma given in Ceranka and Katulska (1996) will be needed 
to prove the next theorem. 

Lemma 1. For any symmetric positive definite matrix   Ge 2Cov  and 

any pnDX  a necessary condition for the total weight to be estimable is that 

ii fa   for at least one i . 
 

Moreover, Katulska (1989) proved the following lemma. 
 

Lemma 2. For any symmetric positive definite nn  matrix   Ge 2Cov , 

pnDX  and any vector 0c   satisfying the condition   ,'1'1'' cXGXXGXc   
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Equality holds in (2) if and only if c  is an eigenvector of .1' XGX   
 

Theorem 1. In any weighing design pnDX  with the covariance matrix 

,2G  where G  is of (1) the variance of the estimator of the total weight is giv-
en as 
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Proof. In the case considered here, under the above assumptions and consid-

ering Lemma 2 we obtain )'( w1 pVar =    yGXXGX1 1'1''
pVar  

    pp
pp

p

1XGX1
1XGX1

1''

22
1''2


 

 and the equality holds if p1  is an eigenvec-

tor of .1' XGX   Furthermore, 

      













pnnppppp ng

X111X1X1X11XGX1 '''''1''

111

1





 

=     






































  
  

2

1 11

2

1 111

1 n

i

p

j
ij

n

i

p

j
ij x

n
x

g 



 

      11111

1 2
222














 n

nd
dn

n
nd

g 



. 

 
If s

pnDX , the equality holds if and only if kki   for all ni ,...,2,1 . If 

c
pnDX , the equality holds if and only if mkmk ii 22   for all ni ,...,2,1 . 

Thus (3) and the proof is completed. 
 
Remark 1. In the special case s

pnDX  and nIG  , Theorem 1 was given 

by Dey and Gupta (1977), whereas in Ceranka and Katulska (1986) was proved 
under assumption  ngggdiag ,...,, 21G , 0ig  for ni ,...,2,1 , and in Cer-
anka and Graczyk (2011) when G  is of the form (1). 
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Remark 2. In the special case c
pnDX  and nIG   and in addition 1ia  

and 1 kfi  or 1 kai  and 1if  for ni ,...,2,1 , the inequality (3) was 

proved by Chacko and Dey (1978) and the equality in (3) was given in Kageya-
ma (1988). For G  in the form (1), Theorem 1 was given by Ceranka and Grac-
zyk (2012). 

From now on, G  is in the form (1). 

Definition 1. Any weighing design pnDX  with the covariance matrix 

G2  is said to be optimal for the estimated total weight if the variance of the 
estimator of total weight attains the lower bound given in Theorem 1, i.e. 
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Theorem 2. Any weighing design pnDX  with the covariance matrix 

G2  is said to be optimal for the estimated total weight if and only if 
(i) p1XGX 1'  and 
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Proof. Let us consider pnDX  and G . Let denote, pX1Gu 2

1
  

and   p1XGXXGv  1'2

1

. Applying the Cauchy-Schwarz inequality on u  and 

v  we have     vvuuvu ''2'  . Equality holds if and only if vu   for some 
scalar  . Substituting for u  and v , the condition vu   reduces to 

  pp 1XGXXGX1G   1'2

1

2

1

  which is equivalent to p1XGX 1'  that 

proves (i). The equality in (3) is attained if and only if ,kki   when s
pnDX  or 

,22 mkmk ii   when ,c
pnDX  .,...,2,1 ni   Hence (ii) is true. 

 

Theorem 3. In any weighing design pnDX  with the covariance matrix 

G2  the conditions (i) and (ii) of Theorem 2 are equivalent to 
(i) p1XGX 1'  and 

(ii) np d1X1  , 
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where 
d

  . 

Proof. To prove the theorem we first observe that from (ii) of Theorem 2 we 

get np d1X1  . Under condition (i) of Theorem 2, p1  implies .1'
pn d

11GX


  

On the other hand, we assume that the conditions given in Theorem 3 are true. 
From p1XGX 1'  we have pn dd 11GX 1' . Taking pX1  for nd1  we ob-

tain .1'
ppp d 11X1GX    Moreover, pX1 = nd1  is equivalent to (ii) of The-

orem 2 and we get required result. 

Note that for ,G  nn 1G1   and ,
1

1
nn 11G


  where   11  ng  . 

 

Corollary 1. In any weighing design pnDX  with the covariance matrix 

,2G  the condition (i) of Theorem 3 is equivalent to ,'
pn 11X   where 

d

  . 

 
Above considerations imply that ,'

pn 11X   i.e. the sum of elements in 

each column of the design matrix pnDX  is the same. On the other hand 

,1'
pn d 11X    i.e. the sum of elements in each column of the design matrix 

X  depends on the matrix .G  Comparing equalities p1  and pd 11  and place 

forms of d,,   and 1G  we obtain identity. Here is why we conclude that the 

optimal design pnDX  is the same for any   01, 1    n , i.e. this de-

sign is robust for different  . The results given in above theorems imply next 

corollary. 
 

Corollary 2. Any weighing design pnDX  with the covariance matrix 

nI2  is optimal for the estimated total weight if and only if such design is opti-

mal for the estimated total weight with the covariance matrix .2G  
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III. CONSTRUCTION OF THE DESIGN MATRIX 
III.I. CONSTRUCTION FOR S

pnDX  

 
Let N  denote the usual bv  binary incidence matrix of block design, 

where v  and b  mean the number of treatments and number of blocks, respec-
tively. Let vb r1N1   and ,'

bv k11N   where r  is the number of replications of 

ith treatment and k  is the size of j th block, ni ,...,2,1 , .,...,2,1 bj   

 
Theorem 4. Any weighing design s

pnDX , NX    'NX or , with the 

covariance matrix G2  is optimal for estimated total weight of bp   

 vp or  objects in vn    bn or  weighings. 

Proof. Let note, if NX   then ,rd   if 'NX  then .kd   Taking 

vk 1a 1   br 1a 1or  it is clear that condition ''
p1Na   is satisfied for 

NX    'NX or . The condition given in Corollary 1 and condition (ii) of 

Theorem 3. follow from the equalities vb r1N1   and .'
bv k11N   

 
 

IV. CONSTRUCTION FOR c
pnDX  

 
Let hN  be the incidence matrix of block design with parameters ,v  hb , hr , 

hk , 2,1h . Thus 

 

  '
21 2

2 bvs 11NNX  , 1s  or –1.  (5) 

 
Theorem 5. Any weighing design c

pnDX , in the form (5) with the co-

variance matrix G2  is optimal for estimated total weight of 21 bbp   objects 
in vn   weighings if  

(i) 221 2rbsr   and 

(ii) vksk  21 2 . 

Proof. According to the condition (ii) of Theorem 3, 

  nnp dbrsr 11X1  221 2 . Furthermore,   ''
2

'
1

'
21 2 bbn vksk 111X  , 

hence vksk  21 2 . The condition ii fa   given in Lemma 1 implies that 

221 2rbsr  . Hence the result. 
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Now, let hN  be the incidence matrix of the incomplete block design with 

parameters hv , b , hr , hk , 2,1h . Thus 

 
  ''

2
'
1 2

2
vbbs 11NNX  , 1s  or –1. (6) 

 
Theorem 6. Any weighing design c

pnDX , in the form (6) with the co-

variance matrix G2  is optimal for estimated total weight of 21 vvp   objects 

in bn   weighings if 
(i) 221 2kvsk   and 

(ii) brsr  21 2 . 

Proof. Condition (ii) of Theorem 3 implies that 

  nnp dvksk 11X1  221 2 . Besides   ''
2

'
1

'
21 2 vvn brsr 111X  , hence 

.2 21 brsr   The condition ii fa   given in Lemma 1 implies that 

221 2kvsk  . Thus we become the result. 

 
 

IV. EXAMPLES 
EXAMPLE 1 

 
Let us consider c

156DX . According to Theorem 5, we construct the inci-

dence matrix 1N  of partially balanced incomplete block design with the parame-

ters hv , 91 b , 31 r , 21 k , 011  , 121   (design SR6, Clatworthy, 1973) 

and the incidence matrix 2N  of partially balanced incomplete block design with 

the parameters 6v , 62 b , 42 r , 42 k , 312  , 222   (design R94, 

Clatworthy, 1973), where 
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2N .  

 
Thus the design matrix c

156DX  of the form (5) for 1s  is given as 
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X . 

 
Let us consider the covariance matrix G2  for 1g , where 
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We have 
7

2
 , 615 5 1X1  . Thus 5d , 156

' 2 11X  . So, we have 

2 , 156
1' 7 11GX   and 7 . Since 615

1' 35 1X1GX  , then 35  

and 
5

7
2

35
2




d

 . Moreover, for the design X  with G , 

2'
15 43,0)1( wVar . It is easy to see that for covariance matrix of errors G2 , 

the design c
156DX  that satisfies Theorem 3 is optimal for estimation of the 

total weight. 
 

EXAMPLE 2 
 
Let us consider the experiment in which we determine total weight of 6p  

objects in 3n  measurements operations. According to Theorem 4 we consider 

design matrix s
63DX  and the covariance matrix G2  for 1g , where 



Bronisław Ceranka, Małgorzata Graczyk 106
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We have ,
3

1
  .4 36 1X1   Hence ,4d  .2 63

' 11X   So, we have 

,2  66
1' 6 11GX   and .6  Since ,24 36

1' 1X1GX   then 24  and 

.
4

3
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
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d

  Moreover, for the design X  with G , 2'
6 25,0)1( wVar . 

It is easy to see that for covariance matrix of errors ,2G  the design s
63DX  

that satisfies Theorem 3 is optimal for estimation of the total weight. 
 

EXAMPLE 3 
 
Now, we consider .128

c
DX  According to the Theorem 6 we construct the 

incidence matrix 1N  of partially balanced incomplete block design with the 

parameters ,41 v  ,8b  ,41 r  ,21 k  ,211   121   (design R1, Clatwor-

thy, 1973) and the incidence matrix 2N  of partially balanced incomplete block 

design with the parameters ,82 v  ,8b  ,62 r  ,62 k  ,612   422   (de-

sign S19, Clatworthy, 1973), where 





















01100110

10101001

10010110

01011001

1N , 



































11101110

11011101

10111011

01110111

11101110

11011101

10111011

01110111

2N .  

 
Thus the design matrix c

128DX  in the form (6) for 1s  is given as 
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













































111111110110

111111111001

111111111100

111111110011

111111110101

111111111010

111111111010

111111110101

X  

 
Condition (i) and (ii) of Theorem 3 are fulfilled and X  given above is opti-

mal for the estimated total weight with 
2

)71(
)'(

2

12

pg
Var





w1 . 
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OPTYMALNE UKŁADY WAGOWE DLA ESTYMACJI CAŁKOWITEJ MASY 
OBIEKTÓW 

 
W pracy przedstawiono teorię estymacji całkowitej masy obiektów zarówno w sprężynowym 

jak i w chemicznym układzie wagowym przy założeniu, że błędy pomiarów dokonywanych  
w tych układach są ujemnie skorelowane. Podano dolne ograniczenie wariancji estymatorów oraz 
warunki konieczne i dostateczne, przy spełnieniu których to dolne ograniczenie jest osiągnięte. 
Praca jest podsumowaniem i zebraniem wiadomości dotyczących tego zagadnienia poszerzonym  
o metody konstrukcji i przykłady macierzy odpowiednich układów eksperymentalnych. 


