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ABSTRACT. The Goldfeld-Quandt test for homoscedasticity in a classical linear 
regression appears to be biased. In the paper an unbiased test is constructed. The result is 
extended to families o f distributions with scale parameter.
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I. INTRODUCTION

Consider a classical linear regression problem У, =ßo + ß\X, +  /  =  1,..., n. 
It is assumed that random errors e,'s are independent random variables distrib
uted as jV(O.rf2). After fitting the model the homoscedasticity of random errors 
should be checked. One of the commonly applied tests is the Goldfeld-Quandt 
test (Greene 2000). In the test, the sample is divided into two disjoint subsam- 
ples of size n{ and «2 respectively, so two models are considered
ľ, +$■>*,+*<>>, /-1 .....1 » , and r f2) = 0 q2) + ß ^ x ,  + е\г), i = l ......И2

with the assumption: e 0) ~ N(0,<r}) and e (2) ~ ;V(0,cr22). Verified hypothesis is 

H0 : cr* = <j \  vs Я , :<r,2 Ф<т\. The Goldfeld-Quandt test statistic is S f /S 2, 

where S,2 and S\  are residual variances in the first and the second model re
spectively. Hypothesis is rejected at the significance level a, if

- V c F
ľ \  

1 a  T T- 2 , n2 - 2 or ■ > F
a

, /?. -  2, n2 -  2

where F(a; u, v) is the а -critical value of the F distribution with (u, v) degrees of 
freedom. Unfortunately, it appears that the test is biased one, i.e. the power of 
the test may be smaller than the significance level. In the Figure 1 the power of 
the test for и, = 10, n2 = 15 and a = 0.05 is shown.
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Figure 1. The power o f the Goldfeld-Quandt test

Hence it is harder to reject the hypothesis H 0 : erf = cr22 for some variances 

o f smaller then cr\ . In the following table there are given variances from the 
alternative hypothesis along with appropriate probabilities p  of rejecting H0:

0.896 0.912 0.928 0.944 0.960 0.976 0.992 1.000

P 0.05004 0.04947 0.04913 0.04898 0.04904 0.04929 0.04972 0.05000

In practice application of the test may lead to serious misstatement that vari
ances are equal though they are not.

The question is, does there exist an unbiased version o f Goldfeld-Quandt test 
and, if yes, how to construct such a test. The above test will be referred to as 
a classical one.

The similar situation is met in the problem of testing H 0 :cr2 = cr̂  vs 

/ / , : er2 * егц in normal distribution N(p ,  cr2). The most commonly used test 
(e.g. Bickel and Doksum 1980; Bartoszyński and Niewiadomska-Bugaj 1996, 
Chow 1983, Müller 1991, Storm 1979), based on a sample Jf,,..., X n with the

sample mean X  = (Ar, +... + X n)ln,  is as follows: reject H0 at a significance 
level a if



Here ^ 2(a;v) denotes the a-critical value o f the chi-square distribution 
with v degrees o f freedom. Some statistical packages (for example Statgraphics 
and Statistica) implement exactly the above lower and upper critical values of 
the test. An unbiased test for this hypothesis may be found in Lehmann (1986). 
A construction of an unbiased test for the scale parameter o f the exponential 
distribution and n = 1 one can find in Knight (2000). In what follows we give 
a general construction o f an unbiased test for scale families o f distributions. 
Some important for practical applications examples as well as a remark on the 
shortest confidence intervals, are also presented.

II. UNBIASED TEST FOR SCALE PARAM ETER

Consider a statistical model (R+,{Fx(x), Л >0}) with scale parameter, i.e. 

Fx {x) = F ( x / Л) . The problem is to test H0 : Л = Aq v s  Н ^ . Л ф Л̂  at a signifi
cance level a.  If Г is a scale equivariant estimator of Л, then critical region is of 
the form:

(*) y -  < G ~ \ a 2) or —— > G~^(ff,),

where a, + a 2 = a  and G”1 is the quantile function o f the null distribution of
77 V

Theorem. There exist a i , a 2 > 0 such that <ar, + a 2 = a  and the test with criti
cal region (*) is unbiased.

Proof. The power o f the test for a fixed«, e (0 ,a)  is

M ( Ä )  = P A — < G - ' ( c c - a ]) or —  > CTl( l - a , )  1 =
1 Л  Л  I

= G

Л Л

~ r - G ( a - a t)  
v Л

l - G
л 1G (1_a,)



Then

dM(Á) _  Л„G ' \ a - a , )  

d  X ~ Ä2 - f t
G-1 ( a - a t) + Л<7~‘( 1 - K ť r 'O - a , )

It follows that M(A) is strictly decreasing to the lefl o f an A., strictly increas
ing to the right o f A*, and achieves its minimum at A. such that

G~' ( a - a x)g
Л,

u
G ( a - o r , )

ŕ
= G"1 (1 -  a ,)g  ^ G - ' O - a , )

The test is unbiased iff Л,=Я0 which holds iff 0 < or, < a  is a solution of 
the equation

(*) G ' \ a -  a, )g(G-' (a  -  a , )) = G"  (1 -  а, )g(ćr' (1 -  a , ))-.-i -ii

Note that if a, ->0  then LHS of (*) tends to G~’(a )g (< j-I(a ) )  > 0 and 

RHS of (*) tends to zero. On the other hand, if a, -» 0 then LHS of (*) tends to 

zero and RHS of (*) tends to G"'(l - a ) g ^ G " '( l - a ) )  > 0. Hence, there exists a\ 

which is a solution of (*). □

Critical values of an unbiased test are illustrated in the Fig. 2.

Figure 2. Critical values o f the unbiased test



It is obvious that the power of the unbiased test and the power o f the symmet
ric test are not comparable. Those powers are shown in the Fig. 3.

Figure 3. Powers of the unbiased test and the symmetric test

III. THREE IMPORTANT EXAMPLES

1. Let F be the exponential distribution, i.e. Fe(x) = 1 - e x p | — and consider 

the problem of testing H o :O = 0o vs Н х:О*О0. Let X x X n be a sample and 

let T  = X,.  The distribution of T is the gamma one with density function:

g J t )  = — -— t"~l exp j “ j ,  for / > 0. 
в"Г(п)  [ 0)

To find the unbiased test one has to find a\ such that

G ; \ a  -  a, )g, (G,-'(a - « , ) )  = G f1 (1 -  or, )g, (G,-1 (1 -  a ,)) .

The solution may be find with the aid of computer (for n = 1 see Knight 
2000). In the Table 1 (for a = 0.05) there are given critical values for unbiased 
test (ui and m2) as well as for classical test (ci and c2).



Table 1

Critical values o f  unbiased and classical test in exponential distribution

n a - ai «1 «2 C\ C2

10 0.0189 4.979 17.613 4.795 17.085

20 0.0207 12.439 30.137 12.217 29.671

50 0.0223 37.372 65.195 37.111 64.781

100 0.0231 81.645 120.919 81.364 120.529

2. Let F  be the normal distribution N(ju,a2) and consider the problem of

testing / / 0 :<j2 =cTo vs H { :cr7 #<Tq. Let X x, . . . ,Xn be a sample and let

T = £ " =1 (X,  -  X )2, where X  denotes sample mean. The distribution of T is the

chi-square with n -  1 degrees of freedom. To find the unbiased test one has to 
find a.\ such that

G '1 (a  -  a, )g  ( g 4 (a  -  a , )) = G_l (1 -  a, )g ( G '1 (1 -  « , )),

where G and g  denotes cdf and pdf of chi-square distribution with n -  1 degrees 
of freedom respectively. The solution may be find with the aid o f computer. In 
the Table 2 (for a = 0.05) there are given critical values for unbiased test (mi and 
u2) as well as for classical test (ci and c2).

Table 2
Critical values o f unbiased and classical test in nonnal

n a  -  ü| «1 "2 C| Cl

10 0.0161 2.953 20.305 2.700 19.023

20 0.0188 9.267 33.921 8.907 32.852

50 0.0211 32.020 71.128 31.555 70.222

100 0.0222 73.882 129.253 73.361 128.422

3. Consider the problem of testing H0 : a 2 = <r2 vs Я, : cr2 * a]  in two nor

mal distributions with variances cr2 and cr2. Note that the Goldfeld-Quandt test

is a special case of the considered test. Let Sf  and S2 be two estimators respec-



tivcly o f o f and o \  such that they are independent random variables distributed

as yłT2(vi ) / vi and ;f2(v2)/v 2 and let T = S ? / S 2. The distribution o f T  is th e /7 
(Snedecor) with V| and v2 degrees o f freedom. In the Goldfeld-Quandt test 
v, = /7, — 2 and v2 =n2 -  2. To find the unbiased test one has to find such that

( « -  «i )£v„v2 ( < С , («  -  « i) ) = GZ*i(1 ■ a i ^ rv,.v2 ( < C , o  -  « t)).

where Gv> and g Vi Vj denotes cdf and pdf of F  (Snedecor) distribution with v,

and v2 degrees of freedom respectively. The solution may be find with the aid of 
computer. In the Table 3 (for a = 0.05) there are given critical values for unbi
ased test (U| and u2) as well as for classical test (C| and c2).

Table 3
Critical values o f unbiased and classical test in two normal distributions

n m a -  ti| «1 «2 C\ сг

10 10 0.0250 0.269 3.717 0.269 3.717

20 10 0.0215 0.348 3.290 0.361 3.419

50 10 0.0188 0.410 3.026 0.432 3.221

100 10 0.0177 0.434 2.936 0.459 3.152

Note that if V| = v2 then g V|,V| (*) = g v|iV| (^)- Hence, in the case the unbiased 

test is the classical one, i.e. a\ = a/2.

IV. UNBIASED TEST AND THE SHORTEST CONFIDENCE
INTERVAL

Now consider the problem of constructing the shortest confidence interval for 
scale parameter Я at the confidence level 1 -  a. Because T is scale equivariant 
estimator of X then the confidence interval for X is of the form:

/
(**) Я 6 G ( 1 - a ,)  G " ( a - a , )



The shortest confidence interval is the solution o f the following problem:

1 1— i------------------ :----------= min,
G ( a -  a,) G (1-or,)

Application of the method of Lagrange multipliers gives the following con
dition for quantiles of the distribution of 7’statistics:

G’1 (a  -  a , )g (G _l (a  - « , ) )  = G"1 (1 -  a , )g(G ~' (1 -o r,)).

This is the same condition as obtained for unbiased test. Hence, the shortest 
confidence interval for X is the acceptance region in the unbiased test for 
H0 : X = X0 vs / / , : X * .

V. NUM ERICAL IM PLEM ENTATION

Critical values o f an unbiased test may be found numerically. In what follows 
there is given a short Mathematica program which allows to find critical values 
of the unbiased version of the Goldfeld-Quandt test. For other problems similar 
programs may be written. O f course, there is also a possibility to use other 
mathematical or statistical packages (in a similar way) to find out critical values 
of an unbiased test.

««Statistics'ContinuousDistributions'

G[n_,m_]=FRatioDistribution[n,m) (‘definition of a F distribution*)

Kw[n_,m_,q_]:=Quantile[G[n, m],q] (*quantile function*)
FF[n_,m_,x_):=CDF[G[n,m],x) (‘cumulative distribution function*) 
HH[n_,m_,x_]:=PDF[G[n,m],x] (‘probability density function*)
RR[n_, m_, alfa_,beta_):=Kw[n,m,1-(alfa-beta)1*HH[n,m,Kw[n,m,l-(alfa-beta))1 
-Kw[n,m,beta]*HH[n,m,Kw[n,m,beta]]
(♦equation to be solved with respect to beta=alfa-alfal*) 

alfa=0.05; n=20; m=10;
bl=beta /. FindRoot[RR[n,m,alfa,beta]==0, beta,0.01]
ul=Kw[n,m,bl]
u2=Kw[n,m,1-(alfa-bl)]



VI. CONCLUSIONS

It was shown that classical test for scale parameter is biased. It is recom
mended to use unbiased test critical values of which are nowadays easy obtain
able by standard software. An additional advantage is such that the shortest con
fidence intervals for scale parameters may be constructed.
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Wojciech Zieliński

TEST GOLDFELDA-QUANDTA: NIEOBCIĄŻONOŚĆ A SYM ETRIA

Test Goldfelda-Quandta hom oscedastyczności stosow any w  klasycznym  m odelu  
regresji liniowej jest testem  obciążonym . W  pracy skonstruowano odpow iedni test nie- 
obciążony. W ynik został rozszerzony na rodziny rozkładów z parametrem skali.


