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A B S T R A C T . In this article an application of neural networks to the reconstruction 
of unknown physical quantities in particle physics is presented. As an example the mass 
reconstruction of the hypothetical Higgs boson in the typical high energy physics ex
periment is used. Monte Carlo events are used to determine the probability distributions 
of observables (energies of two jets and the angle between them) for various Higgs 
boson mass, which are later fitted using a Neural Network. These distributions are used 
to determine the mass probability distribution of the measured particle. The mass is re
constructed without knowing the functional dependence between the observables and the 
measured quantity. The miscalibration of the measured quantities is automatically cor
rected in this method.
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I. INTRODUCTION

In elementary particle physics we need frequently to reconstruct physical 
quantities while the functional dependence between them and the measured ob
servables is not well known. The precision of particle property reconstruction 
can be improved by using data analysis methods that better explore all the acces
sible information. The Bayesian approach, based on an interpretation of prob
ability as a conditional measure of uncertainty, provides such an opportunity.

In the study presented we consider the reaction H->bb—>2 jets, in which the 
Higgs boson decays into two 6-mesons producing two jets, i.e. bunches of parti
cles. The obvious and simplest estimate of the Higgs boson mass is the invariant 
mass of the two jets. To calculate the mass estimate the energies of two jets 
(Ei,E2) and the angle between them {0,2) are needed:
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The same three variables are used in our analysis, but we avoid using the in
variant mass formula. Also the energies of reconstructed jets E / and Ег are not 
calibrated, consequently the invariant mass of two jets is shifted towards lower 
values.

In the method presented here for every event the probability P(x\m) of x 
(vector of measured variables) belonging to class m (mass) is computed. The 
event x  is assigned to the class with the highest probability. For a sample of 
many events originating from the same, but unknown class, the probability is a 
product of the single event probabilities:

where P(m) is a prior on the Higgs mass which we shall take to be constant. In 
the limit of a continuous probability function of the particle mass this method 
gives the best possible estimate of the mass, provided that the probability func
tions are well measured and the vector x describing the event contains all the 
necessary information. One should note that no explicit knowledge of the func
tional dependence of the mass estimate is needed.

In this study, neither physical nor combinatorial background is present. Only 
perfectly identified ft-jets are used. We rely heavily on the Monte Carlo simula
tion, as in the most analysis using machine learning procedures. Events simu
lated with the given Higgs mass give us the relation between the true value of 
the unknown quantity and the observables.

Monte Carlo events were generated using PGS (Pretty Good Simulator) 
(Conway 2005, which was developed during the Fermilab Run II SUSY/Higgs 
Workshop, provides a fast simulation (thought to be accurate to about 15%) of 
the response o f typical collider experiments to high energy collision events. 
Thirteen samples with Higgs masses between 95GeV and 155GeV with 5GeV 
increments were generated. All the simulated samples are divided into two sub
samples: one is used for training the neural network, the second for further 
analysis.
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II. METHOD OF RECONSTRUCTING TIIE UNKNOWN 
HIGGS MASS

Following (Garrido, Juste 1998) each of the simulated samples was used for 
the training o f feed-forward neural network (Zell 1994, Zell 1995) against 
a sample with a flat distribution in all three observables. The probability P(x\m) 
is obtained from the output NN0,„ of the adequately trained neural network:

NN
P(x  I m) cc-------(3)

1 -  N N1 out

The network used for the fit consists of three input nodes, 50 nodes in the 
hidden layer and one output node. There are 13 independent networks, each of 
them trained using a sample with different Higgs mass.

Fig. 1 shows the distributions of the three observables together with the pro
jections obtained from the fitted 3-dimensional function. One o f the advantages 
o f a neural network fit is that data are not binned, which improves the quality of 
the fit while fitting small data samples. Also no analytical formula of the fitted 
function is needed. The complexity of the function shape is determined by the 
number o f neurons in the neural network. The trained neural network can be eas
ily converted into a С-language function, which later returns the probability at 
a very low CPU cost.

Figure 1. Distributions o f the jet energies (left, solid line) and the cosine o f the angle between the 
jets (right, solid line) compared with the projections of the fitted function (dashed line).
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For each event the trained neural networks return the set of probabilities cor
responding to each Higgs mass. To obtain the mass estimate based on a sample 
of few events the probabilities are multiplied. If the true Higgs mass is in be
tween two masses, for which the probability distributions were found, the prob
abilities for these two masses are approximately equal. Therefore the better mass 
estimation is obtained while using the mean instead of the mode. In practical 
application the size of averaging window should be optimized, here the average 
was taken over the entire mass spectrum.

III. RESULTS

The probability distributions as functions of the Higgs mass are shown in 
Fig. 2 for samples of 2300 events generated with four different Higgs masses. On 
the Y-axis the ln(P(x\m)) is plotted, therefore heights of the bins differ by orders of 
magnitude. The plot shows, that the maxima are located at the true Higgs masses.

It is useful and necessary to test this method on a sample generated with 
a Higgs mass different from the masses used for training. Fig. 2 shows the dis
tribution of masses reconstructed as means of the probability distributions for 
many smaller samples of events (129 events in a sample) and for two different 
generated Higgs masses of 120GeV and 137.5GeV. For the Higgs mass of 
137.5GeV (not used in training procedure) two distinct maxima corresponding to 
two neighbor masses of 135GeV and 140GeV are observed.
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Figure 2. Probability distributions for the samples o f 2000 events generated at four Higgs masses: 
110 GeV , 120 GeV , 130 GeV and 140 GeV (left p lot). Reconstructed mass distribution 

for a sample size o f 129 events and for MH = 137.5 GeV (upper right plot) and for MH = 120GeV
(lower right plot)



Fig. 3 shows the reconstructed mass as a function of the number of events 
used for reconstruction (MC sample with Higgs mass 137GeV). On the Y-axis 
the mean mass over many small subsamples is plotted. The bias at low sample 
size is an “edge effect” due to the weighted average being taken over a finite 
Higgs mass range. The effect can be reduced by using a wider Higgs mass range.

The estimation of the mass resolution is obtained by analyzing the root mean 
square (RMS) o f the reconstructed mass distribution as a function o f the number 
o f events in the sample. It should scale according to the formula

RMS(n)  = R M S(\)/y[n  , where n is a number o f events in a sample. Fig. 3 
shows this dependence for samples generated with Higgs masses 137.5GeV and 

120GeV. The violation of the \/-J~n dependence at small sample size is due to 
the fact, that the resolution is limited by the Higgs mass range (i.e. 95GeV to 
155GeV). For greater numbers of events in a sample some violation of this de
pendence for Мц = J37.5GeV sample is observed. Since the closest generated 
Higgs masses are 135GeV and 140GeV, the reconstructed mass tends to be 
equal to one of them, and therefore the RMS is approximately half o f the differ
ence between them, i.e. 2.5GeV (see Fig. 2). This effect can be reduced by gen
erating MC samples with intermediate Higgs masses. Fig. 4 shows the depend
ence of the reconstructed mass (weighted mean for a sample o f 57 events) and 
single event RMS as a function of the true Higgs mass. The dependence is fairly 
linear and the mass is properly reconstructed.
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Figure 3: Mean reconstructed mass as a function of the sample size for a sample generated with 
Higgs mass o f 137GeV (left plot). RMS as a function of l/л/я , where n is a number 

o f events in a sample. Upper right plot shows the dependence for a sample with MH = 137.5GeV,
the lower right for MH = 120GeV.



The results are compared to the mean and RMS of the invariant mass distri
bution, which gives the masses significantly lower than the true Higgs boson 
mass. The invariant mass is scaled by a factor of 1.25 and compared to the re
sults of the Bayesian method.

true mass (GeV)

Figure 4. Reconstructed Higgs mass vs. the true Higgs mass for the Bayesian method (circles), 
mean o f the invariant mass distribution (squares) and corrected mean o f the invariant mass 

distribution (triangles). The error bars represent RMS of the distributions. The data points are
shifted for better visualization.

IV. CONCLUSIONS

The Bayesian approach to the problem of the reconstruction o f the particle 
mass or other particle properties can be performed without any knowledge o f the 
functional dependence of the particle property on measured quantities. For this 
method, as for other methods based on learning algorithms, a good Monte Carlo 
simulation of the physical processes and the detector is essential. In the example 
presented here, where the Higgs boson mass is measured, the method gives 
a mass resolution similar to the one obtained using the standard invariant mass 
analysis, which leads to the conclusion, that in our simplified example no more 
information can be extracted from the jet energies and angle between them be
yond that encoded in the invariant mass.

It was also shown, that the neural network is an excellent tool not only for 
signal and background discrimination, but also to perform multidimensional un- 
binned fits.
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REKONSTRUKCJA WIELKOŚCI FIZYCZNYCH Z UŻYCIEM SIECI
NEURONOWYCH

W artykule zaprezentowane jest zastosowanie sieci neuronowych do rekonstrukcji 
nieznanych wielkości w fizyce cząstek elementarnych. Jako przykład użyta jest rekon
strukcja masy hipotetycznego bozonu Higgsa oparta na symulowanych danych. Dane te 
zostały użyte do wyznaczenia rozkładów prawdopodobieństwa mierzonych wielkości 
(energie dwóch dżetów oraz kąt pomiędzy nimi) dla różnych mas cząstki Higgsa. 
Rozkłady te zostały następnie sparametryzowane za pomocą sieci neuronowych oraz 
wyznaczenia rozkładu prawdopodobieństwa masy mierzonej cząstki. Masa jest wyznac
zona bez użycia zależności funkcyjnej pomiędzy mierzonymi wielkościami a rekon
struowaną masą. Kalibracja wielkości pomiarowych jest automatycznie korygowana 
poprzez rozkłady prawdopodobieństwa.
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