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Abstract. Multiple additive regression trees M ART is a methodology for trying to solve 
prediction problems in regression and classification. It’s one of the boosting methods. It 
was introduced by J. H. Friedman (1999a). Besides accuracy, its primary goal is robust
ness. It lends to be resistant against outliers, missing values, and the inclusion of potential
ly large numbers o f irrelevant predictor variables that have little or no effect on the 

response.
In this paper the M ART algorithm and their applications will be discussed.
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1. INTRODUCTION

The subject of the regression analysis is a set of observations U. Each 
element o f this set is characterized by the vector of variables

( X {, X 2, X p, У).

We look for a function /  which describes the connection between 
response Y  and predictors X t, X 2, X p

Y = f ( X l, X 2, . . . , X p) + e (1)

where e is an error rate.
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The classic solution of this problem is the least squares method. In 
this procedure we know an analytical form of the function /  and we 
estimate the coefficients of / ,  but we must know the distribution of each 
predictor.

For the solving regression models the nonparametric methods were 
introduced. In this methods we don’t have to know distributions of variables 
X {, X 2, ..., X p. They produce models which are often better fitted to the 
data than functions obtained by the least squares method. Nonparametric 
models are more robust and resistant against outliers (bad measurements) 
and missing values. The MART algorithm is a one of them.

2. BO OSTING  M ETH O DS AND “A D ABO O ST” ALGORITHM

Boosting methods are one of the most powerful learning ideas. They 
were originally designed for the classification problem, but later they were 
extended for regression.

In boosting methods we define the function /  as a combination of many 
“weak” classifiers or functions of regression. Weak classifiers or functions 
of regression have the error rate which is only slightly better than random 
guessing. The accuracy of basic functions is increasing and the final model 
is very well fitted to the data.

“AdaBoost” is one of the first and most popular boosting algorithms 
developed by Y. F r e u n d  and R. S c h a p i r e  (1997). This algorithm shows 
the idea of boosting methods very well, so it will be presented in this paper.

We consider the two-class problem. The response variable Y  represents 
the number of class

Ye{ —1, 1}.

Given a vector of predictor variables X and classifier G(X). The rate error 
on the training sample is

err = ^  I  ! (У1 *  °(х()) (2)

In the “AdaBoost” algorithm we look for the classifiers G,(x) on the 
training sample

U — {(x„ y , ) : i =  1,..., N} (3)



For the next iteration data are modified by applying weights w,, w2, ..., wN:
•  those observations that were misclassified have their weights increasing,
•  the weights decrease for those observations that were classified cor-

The classification algorithm is reapplied to the weighted observations 
and we look for new classifier G2(x). This procedure is repeated M times 
until the accuracy of the function doesn’t significantly improve. We build 
the final model from the sequence of classifiers Gm(x), m =  1 , 2 , M.

Algorithm 1. “AdaBoost”

1. Initialize the observations weights vv{ =  —, for i =  1

2. For m =  1,..., M:
a) fit a classifier Gm(x) to the training data using {w,: i =  1
b) compute an error rate

rectly.

N

£  w, ■ I(y, Ф Gm(x))
err, i - 1

N (4)

I

c) compute coefficients:

d) set new weights

w, *-wt- exp(am ■ I(y, Ф Gm(x))) for i -  1, N (6)

3. The final classifier has the form

(7)

The model (7) is a combination of function Gm(x). Coefficients am weigh 
the contribution of each respective Gm(x). The more accurate the classifiers 
in the sequence are the higher the influence of the effects becomes.



3. GENERALIZED BOOSTING M ODEL

The model (7) may be generalized. The boosting model in a classification 
and regression problem takes the additive form

M
/ ( X ) =  X ßm-b { \ ,y m) (8)

m — 1

where ßm are the expansion coefficients and h(X, ym) are usually simple 
functions of multivariate argument X characterized by a set of parame
ters ym.

In model (8) we give a priori function b and we estimate parameters 
ßm and ym. This model is fitting to the data by minimizing a loss function 
L{y, f (x )) over the training sample U:

min £  l Y У» £  ( L ■ К*» Ут) ]  (9)
(Ky.L-t..m*“ 1 \  « -I  /

In this minimizing problem we may use:
• a squared-error function

L (y,f(x)) =  ( y - f ( x ) ) 2 (10)

•  an absolute-error function

L ( y , f ( * ) )  =  \ y - f ( x )  I (11)

•  an exponential loss function for classification:

L(y , f ( x ) )  =  exp ( - у (12)

By taking different types of loss function we get the model that is more 
or less robust.

The solution of minimizing problem (9) is very computationally deman
ding, so we use forward stagewise modeling to solve it. This strategy 
approximates the parameters ym and coefficients ßm in (9) by sequentially 
adding new basic functions. At each iteration we look for only a local 
optimal solution, but this procedure may lead to the final function /  close 
to the global solution of this task.



Algorithm 2. Forward stagewisc additive modeling

1. Initialize

/ 0(х) =  0.

2. For m — I , ..., M:
a) compute ßm and ym by the minimizing the function

(ßm, Vm) =  arg min £  L ( y i, f m_ l(xd + ß ' b(x„ ľ)) (13)
ß.y 1-1

b) set

U x ) = f m - i ( * ) + ß m' K * > Y j  (14)

3. The final model has the form

M
/ ( x ) = / Ai( x )=  Z ß m-b(x,ym) (15)

m « 1

4. BOOSTING TREES

In model (15) we take regression trees as a basic functions b because 
they have good statistical properties. They incorporate mixtures of numeric 
and categorical predictor variables. The numeric predictor variables may be 
generally measured on very different scales. We don’t need to know the 
distribution of variables. Trees are also resistant.

In data mining applications, usually only small fractions of the large 
number of predictor variables that have been included in the analysis are 
actually relevant to prediction. In models based on trees we use only these 
predictors which are important for the variable Y.

Regression trees partition the space of all joint predictor variable values 
into disjoint regions Rj (for y '= 1 ,...,J ) . A constant y} is assigned to each 
such region and the predictive rule is

xeRj=>f (x)  = yj for j  = (16)

In the regression problem we set as a constant yt the average of yt = /(x )  
for x, in regions Rj



Thus the model (tree) can be formally expressed in the additive form

T ( x , Q ) = ' Z y J I ( x e R J) (17)
j- 1

with parameters в  = {Rp yj}Jml... j.
The parameters are found by minimizing the loss function

Ś  = arg min £  £  L(y„ у )  (18)
0 У- I х,еК,

The boosted tree model is a sum of trees T (x ,0 m) of the form (17)

M

/ ( x ) = £ T ( x , 0 J  09 )
m — 1

induced in a forward stagewise manner. At each step of this procedure we 
m ust solve the minimizing problem

N

@m =  a rgm in  (у „ /т -,(х,) +  T ( x ,0 J )  for m = l , . . . , M  (20) 
e„ i -  i

At each iteration o f a forward stagewise procedure we find the region set
and constants 0 m =  {Rjm, yjm}jm i... jm of the next tree, given the current model
/m -i(x ().

Given the regions Rjm we find the optimal constant

N

yjm = arg min Y  Ь( у„ / Я_ 1(х) + yJm) (21)
ti. i - i

5. M INIM IZING  LO SS FUNCTION -  STEEPEST DESCENT ALGORITHM

The solution of minimizing problem (20) is also very computationally 
demanding. We find it by using one of the forward stagewise manners 
called the steepest descent algorithm ( F r i e d m a n  1999a). At each step 
of this procedure we look for that tree T (x ,0 m), which gives the 
steepest descent of loss function. This idea is also used in the MART 
algorithm.



For the model (17) loss function has the form
N

W )  =  Z ^ C v A * )) (22)

where /(x )  =  £  T ( x , ® J  is a regression tree.
m — 1

The goal is to minimize L ( / )  with respect to /  over the training date 
U. Minimizing (22) can be viewed as a numerical optimization

where f e RN are the values of the approximating function /(x ,.) at each of 
the N  data points x,

In the “steepest descent m ethod” we want to maximally reduce a loss 
function, so we move the function L towards to the negative gradient of 
L. Now we fix f at

where pme R  is a scalar and gme R N is a gradient of L(f). The components 
of the gradient gm are

and the process is repeated at the next iteration.
The steepest descent method is one of forward stagewise procedures. 

The estimating of parameters of the model in the stagewise approach is 
analogous to the solution in the steepest descent method. A t each iteration 
in both algorithms we look for function f m which maximally reduces L.

f  =  arg m inL (f) (23)

f = { /(x ,) ,/(x 2) , . . . , / ( x N)} (24)

L =  - p m Zm for m =  1,..., M (25)

for i — 1,.... N (26)

The “step length” pm is the solution to

Pm — arg min L(fm_ i — p • gm) for m =  l , . . . ,M (27)
P

The current solution is then updated

(28)



6. GRADIENT BOOSTING AND M ART ALGORITHM

M ART -  multiple additive regression trees -  is a tree-boosting algorithm 
for multivariate regression. It was developed by J. H. F r i e d m a n  (1999a). 
MART is based on the steepest descent method, so we call it gradient boosting.

Algorithm 3. MART -  multivariate adaptive regression trees

1. Initialize as the model f 0

/ 0(x) =  arg min Х Ц у „ /(х ,))
у i « I

2. For m — 1,..., M:
a) for i =  1 compute the components of gradient o f L

(29)

9 m
SL (y  „ /(x ,))'

(30)

b) fit a regression tree to the target gm giving terminal regions Rjm
j

c) for j  — 1 J m compute

7jm =  arg min £  ЦУь/т - 1W  +  ľ) (31)
y XjeRm)

d) update

/m(x) — f m ~  I(x) +  Ź  yjm ' Дх e Rjm) (32)
y - 1

3. The final model has the form

/(x )  =  /м (х) +  ^  ■ /(x  6 RjM) (33)
J - 1

The first line of the algorithm initializes to the optimal constant model. 
Next, we compute the components of the negative gradient gim. They are 
referred to as “pseudo” residuals. We fit the regression tree to the gim, 
update the model and repeat this procedure. In the end, we obtain model 
(33) which is very well fitted to the date.



7. EXAM PLE OF APPLICATION OF M ART

For the illustration of the MART algorithm in regression we conduct 
computation on the “Boston” data set.

D ata in the “ Boston” set were collected by P. H a r r i s o n  and D. L. 
R u b e n f e l d  (1978), who conducted research on relationships between the 
quality of life and prices of property in the Boston area.

D ata in this set are characterized by twelve predictor variables:
X { =  C R IM  -  per capita crime rate by town,
X 2 = IN D U S  -  proportion of non-retail business acres per town,
X 3 =  CHAS  -  Charles River dummy variable (1 if tract bounds 

river 0 otherwise),
X 4 =  N O X  -  nitrogen oxides concentration (parts per 10 million), 
X s — R M  -  average number of rooms,
X 6 =  AGE  -  proportion of owner-occupied units built prior to

1940,
X 1 =  DJS -  weighted mean of distances to Boston employment

centers,
X 8 =  RAD  -  index of accessibility to radial highways,
X 9 = T A X  -  full-value property-tax rate per 10 000 dollars,
X ,0 =  PT R A T IO  -  pupil-teacher ratio by town,
X n =  BLACK -  the proportion of Afro-Americans by town,
X l2 =  L S T A T  -  lower status of the population (percent).
Response variable is У =  MEDV  -  median value of owner-occupied

homes in thousand dollars.
The M ART algorithm was performed in 30 000 times (for 10 000 trees) 

and in a step 9851 we get the lowest test error

err = Y, LV|-/m(xí)I =  1-931.
i = 1

Figure 1 presents the average absolute test error on the set of “ Boston” 
data. The lower line is the training error as a function of number of 
iterations. The upper line is the corresponding test error.

M ART introduces to the model only these predictors which have the 
largest influence on the response variable У. Figure 2 shows the estimated 
relative importance of six predictor variables. Variable L S T A T  — lower 
status of the population — is the most relevant predictor. CHAS  — Charles 
River dummy variable is the least important.
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Fig. 1. Average absolute error as a function of number o f iterations for the testing sample 
(the upper line) and training sample (the lower line)

S o u r c e :  own results.
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Fig. 2. Relative variable importance o f the predictors for the “B oston” data 

S o u r c e :  own results.
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Fig. 3. Partial dependence o f housing value on the different predictors for the “Boston” data

S o u r c e :  own results.

Figure 3 displays single-variable partial dependence plots. It collects the 
results for the six most important predictor variables. Note that the plots 
are not strictly smooth. This is the consequence o f using tree-based models 
which produce discontinuous piecewise constants models.

Figure 4 and 5 are perspective mesh plots showing the dependence of 
two chosen predictors on housing value in Boston.



Fig. 4. Partial dependence o f housing value on average number o f rooms
and lower status o f  the population

S o u r c e :  own results.

8.

Fig. 5. Partial dependence o f housing value on average number o f  rooms
and pupil-teacher ratio by town

S o u r c e :  own results.



The accuracy of the tree-based model is estimated with the help of 
a coefficient R 2. For comparison purpose, R 2 is calculated for four different 
models: the linear model (LN), projection pursuit regression (PPR), multi
variate adaptive regression splines (MARS) and MART. The results are 
collected in Tab. 1.

Table 1

Accuracy o f the various regression models

M odel LN M ARS PPR M ART

R2 0.779 0.780 0.883 0.988

S o u r c e :  own results.

8. SUM M ARY

Models which are obtained by the MART algorithm are very well fitted 
to the data. We get the best accuracy for the “Boston” data for the model 
based on the M ART method.

In data mining problems we often have a large number of irrelevant 
predictors. The M ART algorithm selects to a model only these predictor 
variables which have the strongest influence on the response.

In tree-based model we may use and mix numerical and categorical 
predictor variables. We don’t need to know the distribution of variables and 
the numeric predictors may be generally measured on very different scales.

The primary goal of M ART is robustness. It tends to be resistant 
against outliers (bad measurements) and missing values. M ART produces 
competitive, highly robust, interpretability results.
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AD DYTYW NA M ETODA BUDOW Y DRZEW  REGRESYJNYCH (M ART)
I JEJ ZASTOSOW ANIE

Addytywna metoda budowy drzew regresyjnych (M ART), została zaproponowana przez 
J. H. F r i e d m a n a  w 1999 r. (1999a, b). Jest to jedna z metod agregacyjnych, mająca 
zastosowanie w regresji i dyskryminacji opierająca się na modelach w postaci drzew. Jej 
zaletami, poza dokładnością predykcji, jest odporność na wartości oddalone i braki danych. 
Bardzo dobrze radzi sobie również z dużą liczbą zmiennych objaśniających, wśród których 
wiele może nie mieć istotnego wpływu na zmienną zależną.

W artykule przedstawiona została ogólna idea metod agregacyjnych. Zaprezentowano 
i om ówiono kolejne kroki algorytmu M ART, a następnie, dla ilustracji, podany został przykład 
zastosowania procedury M ART dla zbioru danych „Boston”.


