## ACTA UNIVERSITATIS LODZIENSIS FOLIA OECONOMICA 206, 2007

# Agnieszka Rossa\*

# ON SOME INFERENTIAL PROCEDURES FOR RECEIVER OPERATING CHARACTERISTIC CURVES

Abstract. In the paper two significance tests for receiver operating characteristic curves (ROC) are proposed. Both tests use an asymptotic  $\chi^2$  distribution of the test statistics.

Key words: ROC curve, goodness-of-fit tests.

#### **1. NOTATION**

Suppose a diagnostic test is used to detect the presence of a disease. Let X be a random variable representing the test result. Denote by  $\pi_0, \pi_1$  a disease group and a control group, respectively. We will assume that an individual comes from  $\pi_0$ , if X exceeds a fixed threshold X, say, and from  $\pi_1$ , otherwise. Let

$$C = X | \pi_0, \quad Z = X | \pi_1,$$

variables C and Z represent the diagnostic variable X in the respective populations  $\pi_0$  and  $\pi_1$ . Let F and G be cumulative distribution functions (CDF) of C and Z, respectively.

#### 2. THE ROC CURVE

The ROC curve (receiver operating characteristic curve, see: Green, Swets 1966; Lloyd 1998) is a plot of  $p_0 = 1 - F(x)$  against  $p_1 = 1 - G(x)$ as x varies over the support of X. In biomedical context  $p_0$  is termed "sensitivity", and  $1 - p_1$  is termed "specificity".

\* Ph.D., Associate Professor, Department of Statistical Methods, University of Łódź.

In statistical terms, the ROC curve displays the trade-off between "power" and "size" of the test with a rejection region  $\{X > x\}$  as x is varied. The power  $P(X > x | \pi_0)$  is the probability of a true positive diagnosis, and the size  $P(X > x | \pi_1)$  is the probability of false positive diagnosis. If X is continuous, then ROC depends on F, G via the formula

$$ROC(v) = 1 - F(G^{-1}(1-v)), v \in [0,1]$$
 (1)

Indeed, let us denote v = 1 - G(x) then G(x) = 1 - v and  $x(v) = G^{-1}(1 - v)$ . Thus, for  $v \in [0, 1]$  we receive ROC(v) = 1 - F(x(v)) what leads directly to (1).



Fig. 1. An example of a ROC curve

Source: own elaboration.

Estimation of ROC(v) is usually based on replacing F and G by their empirical counterparts  $F_m$  and  $G_n$  defined as follows

$$F_{m}(x) = \frac{1}{m} \sum_{i=1}^{m} \mathbb{1}(C_{i} \leq x)$$
(2)

$$G_n(x) = \frac{1}{n} \sum_{i=1}^n \mathbb{1}(Z_i \le x)$$
(3)

where 1(A) denotes a characteristic function of an event A, and

$$C_1, C_2, \dots, C_m, \quad Z_1, Z_2, \dots, Z_n$$
 (4)

are two independent random samples drawn from populations  $\pi_0$  and  $\pi_1$ , respectively.

The ROC curve summarizes the separation between the distributions F and G in two populations  $\pi_0$  and  $\pi_1$ . The higher is the ROC curve, the greater is the prediction accuracy of X. If the ROC curve of a variable

114

X lies on the diagonal of the unit space then there are no difference in distributions of X in the populations  $\pi_0$  and  $\pi_1$ . This concept constitutes a background for two  $\chi^2$  goodness-of-fit tests discussed in details in the next section.

## 3. THE GOODNESS-OF-FIT TESTS FOR ROC CURVES

We will consider the problem of testing two null hypotheses. The first one states, that the *ROC* curve lies on the diagonal

$$H_0: \underset{\nu \in [0, 1]}{\forall} ROC(\nu) = \nu$$
(5)

The second null hypothesis assumes that ROC functions for two diagnostic variables  $X_A$  and  $X_B$ , say, are equal

$$\mathbf{H}'_{0}: \forall ROC_{A}(v) = ROC_{B}(v)$$
(6)

The alternatives for both cases (5) and (6) take the general form  $H_1 : \sim H_0$ and  $H'_1 : \sim H'_0$ , respectively.

In order to test the hypotheses (5) and (6) we will focus on a random variable G(C). It easy to proof that a CDF of a variable defined as

W = 1 - G(C)

is equivalent to the ROC function (1). Indeed, we have for  $v \in [0, 1]$ 

$$P(W < v) = P(1 - G(C) < v) = P(G(C) > 1 - v) = P(C > G^{-1}(1 - v)) =$$
  
= 1 - P(C \le G^{-1}(1 - v)) = 1 - F(G^{-1}(1 - v)) = ROC(v).

Unfortunately, it is usually impossible to observe G(C) without any parametric assumptions concerning the function G. In our considerations we will replace the unknown function G with its empirical counterpart  $G_n$  defined in (3). Thus, we will consider a random variable  $G_n(C)$  instead of G(C).

It can be seen, that  $G_n(C)$  takes values from the finite set

$$\left\{0, \frac{1}{n}, ..., \frac{n-1}{n}, 1\right\}$$
.

To find its probability distribution function let us denote by R, F the CDF's of G(C) and C, and by r and f the density functions of G(C) and C, respectively. Notice, that for  $x \in [0, 1]$  the following equalities hold

$$R(x) = F(G^{-1}(x)), \quad r(x) = f(G^{-1}(x))[G^{-1}(x)]'$$
(7)

Thus, for a fixed  $i \in \{0, 1, ..., n\}$  we have

$$\mathbb{P}\left(G_n(C) = \frac{i}{n}\right) = \binom{n}{i} \int_{-\infty}^{\infty} G^i(x)[1 - G(x)]^{n-i}f(x)dx.$$

Denoting by y = G(x) we obtain

$$x = G^{-1}(y), \quad dx = [G^{-1}(y)]'dy,$$

and

$$P\left(G_n(C) = \frac{i}{n}\right) = \binom{n}{i} \int_0^1 y^i (1-y)^{n-i} f(G^{-1}(y)) [G^{-1}(y)]' dy$$

This result and (7) lead to the probability distribution function of  $G_n(C)$  of the form

$$\mathbf{P}\left(G_{n}(C) = \frac{i}{n}\right) = \binom{n}{i} \int_{0}^{1} y^{i}(1-y)^{n-i} r(y) \mathrm{d}y, \quad i \in \{0, 1, ..., n\}$$
(8)

### 3.1. Testing the null hypothesis $H_0$

If the hypothesis (5) is true then r(y) = 1 for  $y \in [0, 1]$  and (8) reduces to

$$\mathbf{P}\left(G_{n}(C) = \frac{i}{n} \mid \mathbf{H}_{0}\right) = {\binom{n}{i}}_{0}^{i} y^{i} (1-y)^{n-i} \,\mathrm{d}y, \quad i \in \{0, 1, ..., n\}$$
(9)

Let  $B(\alpha,\beta)$  be the beta function with parameters  $\alpha,\beta$ , i.e.

$$B(\alpha,\beta) = \int_{0}^{1} y^{\alpha-1} (1-y)^{\beta-1} dy$$
 (10)

Denoting by  $\Gamma(\cdot)$  the gamma function, the following properties are wellknown

$$B(\alpha,\beta) = \Gamma(\alpha)\Gamma(\beta)/\Gamma(\alpha+\beta), \quad \Gamma(n+1) = n! \quad n \in N$$
(11)

From (9)-(11) we receive

$$P\left(G_{n}(C) = \frac{i}{n} \mid H_{0}\right) = \binom{n}{i} \int_{0}^{1} y^{i}(1-y)^{n-i} dy = \binom{n}{i} B(i+1, n-i+1) = \\ = \binom{n}{i} \frac{\Gamma(i+1)\Gamma(n-i+1)}{\Gamma(n+2)} = \binom{n}{i} \frac{i!(n-i)!}{(n+1)!} = \frac{1}{n+1}$$
(12)

Consider the random sample

$$G_n(C_1), G_n(C_2), \dots, G_n(C_m)$$
 (13)

derived by a simple transformation of sequences (4). Basing the use of the sample (13), we can verify the null hypothesis (5) by means of the goodness-of-fit test statistic

$$Z_{1} = \sum_{i=0}^{n} \frac{(m_{i} - mp)^{2}}{mp}$$
(14)

where *m* is a size of the sample (13), p = 1/(n+1) represents the theoretical probability (12) that  $G_n(C) = i/n$ , and  $m_i$  stands for the empirical number of observations in (13) equal to i/n. If  $m \to \infty$ , then  $Z_1$  under  $H_0$  has an asymptotic  $\chi^2$  distribution with *n* degrees of freedom.

## 3.2. Testing the null hypothesis H<sub>0</sub>

Let  $X_A$ ,  $X_B$  be two diagnostic variables and  $\pi_0$ ,  $\pi_1$  be two populations of individuals. Let us denote

$$C_A = X_A | \pi_0, \quad C_B = X_B | \pi_0, \quad Z_A = X_A | \pi_1, \quad Z_B = X_B | \pi_1,$$

and consider *m* independent copies of  $C_A$ , *k* independent copies of  $C_B$ , and *n* independent copies of both  $Z_A$  and  $Z_B$ . In other words, let us consider four independent random samples drawn from  $\pi_0$ ,  $\pi_1$ 

$$C_{A1}, C_{A2}, \dots, C_{Am}, C_{B1}, C_{B2}, \dots, C_{Bk}$$
 (15)

$$Z_{A1}, Z_{A2}, \dots, Z_{An}, Z_{B1}, Z_{B2}, \dots, Z_{Bn}$$
 (16)

Two sequences in (15) can be treated as independent random samples of two diagnostic variables  $X_A$ ,  $X_B$  drawn from  $\pi_0$  and two sequences in (16) – as independent random samples of  $X_A$ ,  $X_B$  drawn from  $\pi_1$ . Simple transformations of (15)–(16) lead to the following two independent, random sequences

$$G_{An}(C_{A1}), \quad G_{An}(C_{A2}), \dots, G_{An}(C_{Am})$$
 (17)

$$G_{Bn}(C_{B1}), \quad G_{Bn}(C_{B2}), \dots, G_{Bn}(C_{Bk})$$
 (18)

Table 1

where  $G_{An}$ ,  $G_{Bn}$  represent empirical distribution functions derived according to the formula (3) from  $Z_{A1}, Z_{A2}, ..., Z_{An}$  and  $Z_{B1}, Z_{B2}, ..., Z_{Bn}$ respectively.

If the null hypothesis (6) is true, then the variables  $G_{An}(C_{Ai})$ , i = 1, 2, ..., mand  $G_{Bn}(C_{Aj})$ , j = 1, 2, ..., k in (17)-(18) are identically distributed with probability distribution functions expressed by (8). Further we will consider samples (17)-(18) grouped into the Tab. 1.

| i/n         | $G_{An}(C_A)$     | $G_{Bn}(C_B)$                      | Σ                                                         |
|-------------|-------------------|------------------------------------|-----------------------------------------------------------|
| 0<br>1/n    |                   | N <sub>B0</sub><br>N <sub>B1</sub> | B.0<br>N.1                                                |
| ${(n-1)/n}$ | $N_{An-1} N_{An}$ | $N_{Bn-1} N_{Bn}$                  | $\begin{bmatrix} \dots \\ N_{n-1} \\ N_{n} \end{bmatrix}$ |
| Σ           | $N_A = m$         | $N_{B'} = k$                       | N = m + k                                                 |

Now, we can verify the null hypothesis (6) by means of the test statistic of the form

$$Z_{2} = N \sum_{i=0}^{n} \frac{\left(N_{Ai} - \frac{N_{A} \cdot N_{\cdot i}}{N}\right)^{2}}{N_{A} \cdot N_{\cdot i}} + N \sum_{i=0}^{n} \frac{\left(N_{Bi} - \frac{N_{B} \cdot N_{\cdot i}}{N}\right)^{2}}{N_{B} \cdot N_{\cdot i}}$$
(19)

If  $N \to \infty$ , then  $Z_2$  under  $H'_0$  has an asymptotic  $\chi^2$  distribution with *n* degrees of freedom.

118

#### REFERENCES

Green D. M., Swets J. A. (1966), Signal Detection Theory and Psychophysics, Wiley, New York.

Lloyd C. J. (1998), Using Smoothed Receiver Operating Characteristic Curves to Summarize and Compare Diagnostic Systems, JASA, 93, 1356-1364.

### Agnieszka Rossa

# O PEWNYCH TESTACH DLA KRZYWYCH OPERACYJNO-CHARAKTERYSTYCZNYCH

W pracy zaproponowano dwa testy istotności dla krzywych operacyjno-charakterystycznych (ROC), oparte na asymptotycznym rozkładzie statystyk testowych  $\chi^2$ .