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MULTIVALUED STOCHASTIC PROCESSES

Abstract. Multivalued random variables and stochastic processes can be use in integral
geometry, mathematical economics or stochastic optimization. In the study of multivalued
stochastic processes the some clue problem is the question of existing the vector-valued selection
processes. Using the methods of selection operators it is possible to show the existence of
convergence in distribution selections and stationary selections for multivalued stochastic processes.
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1. INTRODUCTION

We present a concept of selection operators for multivalued random
variables. For multivalued stochastic processes the some important problem
is the question of existing the vector-valued selection processes. In this
paper we continue our work on properties of multivalued random variables
(Trzpiot 1995a, b, ¢, 1999, 2002). First two sections contain basic definitions,
next characterizations of identically distributed multivalued random variables
and the selection problem of multivalued random variables converging in
distribution. We show the existence of convergence in distribution selections
and stationary selections for multivalued stochastic processes.

2. MULTIVALUED RANDOM VARIABLE

Given a probability measure space (Q, A, i) random variable in classical
definition is a mapping from Q to R. Multivalued random variable is
a mapping from Q to all closed subset of X.
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We have a real Banach space X with metric d. For any nonempty and
closed sets A, Bc X we define the HausdorfF distance h(A, B) of A and B.
Definition 1. The excess for two nonempty and closed sets be defined by

e(A, B) = supd(x, B), where d(x, B) = inf|jc- y|| (D)
xeA yeB

the Hausdorff distance of A and B is given by
h(A, B) = max {e(A, B), (B, M}, (2)

the norm |A| of set A we get as

MU = h(A, {0}) = suplixI 3)
XeA

The set of all nonempty and closed subsets of X is a metric space with
the Hausdorff distance. The set of all nonempty and compact subsets of
X is a complete, separable metric space with the metric h.

Definition 2. A multivalued function <p:Q —* 2X with nonempty and closed
values, is said to be (weakly) measurable if ¢ satisfies the following equivalent
conditions:

e ¢cp~I(C) = {coen: (p(a>)NnG PO} e A for every G open subset of X,

e d(X, (p((0)) is measurable in co for every xeX,

+ there exists a sequence {fn} of measurable functions {,};: Z—»X such
that co(@) = cl {fn(co)} for all coeQ.

Definition 3. A measurable multivalued function cp:i —m2x with nonem-
pty and closed values is called a multivalued random variable.

A multivalued function ¢ is called strongly measurable, if there exist
a sequence {"n} of simple functions (measurable functions having a finite
number of values in 2X), such that h(<,(@), P(®m) —0 a.e.

Since set of all nonempty and compact (or convex and compact) subsets
of X is a complete separable metric space with the metric h, so multifunction
ip:il —m2X is measurable if and only if is strongly measurable. This is
equivalent to the Borel measurability of <

Let K(X) denote all nonempty and closed subsets of X. As the cr-field
on K(X), we get the crfield generated by o>(G) = {coefi :(p(a>)r\G ®0},
for every open subset G of X. The smallest cralgebra containing these
0> 1(G) we de noted by A{p

1. Two multifunctions (p and y/ are independent if Ap and Ay are
independent.



2. Two multifunctions < and y/ are identically distributed
u((p~LC)) = /*(™_1(C)) for all closed CczX.

Definition 4. We say that a sequence of multivalued random variables
qn:£2 —m2K(X is independent if so is {q,} considered as measurable functions
from (Q,A, u) to (K(X),G).

Definition 5. Two multivalued random variables (pij/:£l—*2Km are
identically distributed if (p(co) = a.e.

Particularly for e, with compact values independence (identical dist-
ributedness) of {ip,} coincides with that considered as Borel measurable
functions to all nonempty, compact subsets of X.

Definition 6. A selection of the measurable multifunction <p:il —m2X is
a measurable function f:il—*X, such that /(w)6”(co) for all coeQ.

Let 9y :1 —»2K( be two multivalued random variables, we define the
following operation (Castaing, Valadier 1997):

e (Qu il)(<u) = ca1(cp((@) + y{o3)), coeil.

« for a measurable real-valued function g:

(oP)(@ = g(@)<p(ca), coeil.

* (Co)(co) = Co weQ,
(¢o-denote the closed convex hull).

3. MEAN OF MULTIVALUED RANDOM VARIABLE

Let LRQ,A), for I"p”~oo, denote the X - valued LP - space. We
introduce the multivalued Lp space.

Definition 7. The multivalued space Lf[£l,K(X)], for I"p~co denote
the space of all measurable multivalued functions <p:Q —>2K(X), such that
M = IKO I is in U.

Then //I[£2,K(A™)] becomes a complete metric space with the metric Hp
given by

Hp((p, V) = {\nh(P(c0), y/(a))pdn}lp, for 1< p< 00
Hw((s, y/) = ess sup h(<p(co), if/(co),
LLEVA

where e and y/ are considered to be identical if <p(co) = y/(co) a.e.

We can define similarly other Lp space for set of different subsets of
X (convex and closed, weakly compact or compact). We denote by
LP[Q,K(X)] the space of all strongly measurable functions in Lp[£l,K(X)].
Then all this space is complete metric space with the metric Hp.

if



Definition 8. The mean E(tp), for a multivalued random variables
<p:to —»2K(X) is given as the integral \Qg>dn of @ defined by

E(v) = Jo<pdn{Jafdn :feS(tp)}, (5)
where
S(<p) = {fe L‘[Q, X] :f(0>)e (o) e (&) a.e.}

The mean E<p) exists, if S(tp) is nonempty. Multifunction @ is an
integrable, if ||™(to)]| is an integrable. If ip have an integral, then E<p)
is compact. If // is atomless, then E(e) is convex. If 9 have an integral
and E(cp) is nonempty, then co E(<p) = E(cocp), (co - denote convex hull
of the set).

This multivalued integral was introduced by Aumann (1965). For detailed
arguments concerning the measurability and integration of multifunction we
refer to Castaing and Valadier (1977), Debreu (1967), Rockefellar (1976).
Now we present some properties of mean of multivalued random variables.

Let <, :£1 —m2K(X be two multivalued random variables with nonempty
S(<p) and S(y/) then:

o clE(<puy/) = cl(E(cp) -I- E(w/)), where (u u/)(co) = cl(e(w) + y/(c3)).

 clE(Co 9 = co E(<p), where (Co <p)(co) = LI (co), the closed convex
hull.

* h(cl E(<p),cl E(i//)) = Hj(p, ¥/).

Lemat 1. [2] Let tp:£l —m2K({) and 1<p~oc. If

Sp(xp) = {feL~ii, X]: f(co) < e((o) a.e.} (6)

then exists a sequence {fn} contained in Sp(cp) such that <p(co) = cl{fn(cu)}
for all cued.

I“emat 2. [2] Let 9~:Q -+ 2K and Up~oc. If Sp{(p) = Sp(y/) 0
then (p{(0) = tp(oj) a.e.

This properties of mean of multivalued random variables are in fact
the properties of the multivalued Aumann’s integral.

4. MULTIVALUED STOCHASTIC PROCESS

Let T denote the set of positive integers or nonnegative real numbers.
Definition 9. Multivalued stochastic process is a family of multivalued
random variables indexed by T {qnteT}.
Supposing that P are the certain properties of stochastic processes.



Definition 10. A vector valued stochastic process {fnte T} will be called
a P selection of {<p,,,n"l}, if {fnteT} has the properties P and f,e<pn
a.e. for each teT.
Let {A, teT} be an increasing family of sub-a-algebras of A.
A multivalued stochastic process {gnteT} is said to be integrable if for
each teT is integrable bounded (respectively, A, measurable)

Definition 11. Let A” be a separable Banach space. The map
M :K(X) —»X is called a selection operator if V(A)eA, for all AeK(X).

1) I is called a continuous selection operator (or measurable operator)
if Tis continuous with respect to topology on K(X) generated by the subbase
{NeK(X), a<d(x,A)<b} (a,heR,xeX}. Denote Borel a-algebra of this
topology by B. This is separable and completely mertizable topology space
(K(X), W).

2) I is called a linear selection operator if for any A, BeK(X)

I (ayA + a2B) = ol (A) + a2l (B). @)

3) I is called a Lipschitz selection operator if there exists a constant
K> 0 such that for any A, BeK(X)

IIF(N)-r(B)ll<bl (N1,5) (8)

Theorem 1. Let X be a separable Banach space. Then there exists
a sequence of measurable selection operators {I',,} such that for each
AeK(X)

A = c\{r(A)}. 9

Salinetti and Wets (1979) studied the distribution theory of multivalued
random variables in finite dimensional Banach spaces. They proved that
multivalued random variables (pY and <2 are identically distributed if and
only if the real-valued stochastic process {d(x, ip~xeX} and {d(x, 2 ,xeX
have the same finite dimensional distribution.

If a sequence of multivalued random variables {en} converges in dist-
ribution to (p, then there exist selections {} of \e'} such that {||/J}
converges in distribution to ||/||, where/ is a vector valued random variables
with f etp a.e.

Theorem 2. Let X be a finite-dimensional Banach space, and let ex and
(2 be two multivalued random variables. Then the following are equivalent:

1. ex and 92 are identically distributed.

2. There exist selection sequences {f\} and {fl} of (y and tp2 such that

= cl{f,(6)}, i= 1,2



3. The real-valued stochastic process and {d(x, tp2),xeX}
have the same finite dimensional distribution.

Proof (1=>2) Suppose that ot and R are identically distributed, and
let {I's} be the sequences of measurable selection operators as in Theorem 1.

We define f h= I,,(™") for i= 1,2, so we have I,(n)) = cl{f[{l'0)}.

To prove that {fj;} and {fl} have the same finite dimensional dist-

ribution, it is sufficient to show that for any positive integer 1,
dj...... and open sets Gl,...,,Gk one has
P{coeQ:/ijeGj, 1 k} = P{a>eQ :fBkeGj, I™Mj"k). (10)

According to definition we get

P{coeil :fhjeGj, 1 = P{ct>eil :rrt(~eG ;, 1<j</c} =
= P(coeQ :tpier™jyGY, 1 k} = P{coeCl :9le f) I
J=i

Since r*G ~eBO k) according to definition of 'y, so equation
(10) follows from the assumption.

Proof (2=>3). Suppose that (2) is true, so we need to show that for any
k™1, xI,...,xkeX and nonnegative number alt...,ak one has

P{coe Q :d(xk, oY) < a*} = P{a) e Q :d(xk, (p2) < a kj. (11)

We check this firstly for k = 2, generalization is easy.
Because [((co) = cl{f!,(l'o)}, for i=1,2, so we know that

e = infHo || -

Let
AK = {<yeQ : Ixk- f\lI < a*} (12)
and let

Afp={ctieQ :|xk-/i|| <ajn f| A[(,n"I. (13)
1=1

For each fixed i and j {A'J} is a sequence of disjoint measurable sets and
we have

{coeQ :d(xk(p)<ak k= 12) = ((JAMNn  A%) =
s (=K1

u U (A*1- nA%) for i= 1,2.
n=1im-1



According to fact that {/*} and {f 2} have the same finite dimensional
distribution we get for each pair (n,m) P(N1Y nA™,2) = P(A2LnJ1£2).

00 00

The point (11) follows from the tact that (J \J (A;] —nA%) is the
FUL=1
union of a sequence of disjoint measurable sets.

Proof (3=>1). This was proved by Salinetti and Wets (1979).

Theorem 3. Let X be a separable Banach spaces and let {§,} be a sequen-
ce of closed and convex multivalued random variables converging to dist-
ribution (. Then, there exist a sequence of selection [fn} of {#,} such that
{/,,} converges in distribution to fee a.e.

Proof. We denote by Kc(X) all closed and convex subsets of X. We
claim that <p(a>)eKc(X) a.e. Since Kc(X) is a closed subspace of (K(X), W)

so (meK(X) a.e. for each 1. Let I be the continuous selection operators
on Kc(X).
Define
/=F(<p) and f, =T (<p. (15)

We can see that/,, and / are measurable and f netpnfe(p a.e. Let nfn and
Hf denote the probability measure on X induced by /,, and / respectively.
To prove that {fn} converge in distribution to /, it is sufficient to show
that for every bounded continuous function g.X —mR one has

lim\xg{x)dnfn= \x g{x)dnf (16)
n-*w

Let F(A) = <?(I'(J1) for each AeKc(X). Than F is bounded continuous
function on Kc(X).
We can write

\x g(x)d.Bf" = \ag(f(oi))dnf and JIxg(x)dnf = \ag(f{(o))dP. @an

Next
\Kc(X)F(A)dnft = \aF{(pn(ai))dP and \KciXF{A)dRf = fuF(<p(a>))dP. (18)

As {en} converges in distribution to ¢ it follows that

lim $xg(x)d~f, = lim \ng(f,(co))dP = lim Jng (" (n(co))dP =
@ o *

n-*
lim \UF((pn(m)dP = lim JKciX)F(A)dP = F(A)d(if = \nF(<p((0))dP =
n @ n-»0
$na(F(<p(coNeP = \ag(f(a>)dP = \x g{xNer (19)

This proves (16) and the theorem follows.



Theorem 4. Let X be a separable Banach space and let
{(pv164 +} c/Zypi,X] be a regular and right-continuous with respect to
topology space (K(X), W). Then {for,teR +} has a regular and right-con-
tinuous selection.

Proof. Let I' be the continuous selection operator on Kc(X). Define

for each teR + and cog£2, /,(co) = r(ej,(<y))- It is easy to check that
{f,,teR +} is regular and a right-continuous selection of {qt,teR +}.
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WIELOWARTOSCIOWE PROCESY STOCHASTYCZNE

(Streszczenie)

Wielowarto$ciowe zmienne losowe i wielowarto$ciowe procesy stochastyczne znajduja
zastosowanie w geometrii r6zniczkowej, w matematycznej ekonomii oraz w zadaniach stochas-
tycznej optymalizacji. W teorii wielowartoSciowych proceséw stochastycznych waznym prob-
lemem jest pytanie o istnienie wektora selektoréw procesu stochastycznego. W artykule wy-
korzystujac operatory selekcyjne, pokazujemy zbiezno$¢ wzgledem dystrybuant oraz stacjonar-
no$¢ selektora wielowarto$ciowego procesu stochastycznego.



