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BALANCED BLOCK DESIGNS LEADING TO THE OPTIMUM
CHEMICAL BALANCE WEIGHING DESIGN WITH EQUAL
CORRELATIONS OF ERRORS

Abstract. The paper is studying the estimation problem of individual weights of objects
using the chemical balance weighing design under the restriction on the number times in which
each object is weighed. We assume that errors have the same variances and they are equal
correlated. The necessary and sufficient conditions under which the lower bound of variance
of parb of the estimated weights is attained are given. The incidence matrices of the balanced
incomplete block designs and balanced bipartite weighing designs are used to construct the
matrix of the optimum chemical balance weighing designs.
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1. INTRODUCTION

Let us consider the class ®uxp.7(-1, 0, 1) of the n x p matrices X with
elements equal to -1, 0 or 1, where m is the maximum number of elements
equal to -1 and 1 in each column of the matrix X. The matrices belonging
to this class are the design matrices of the chemical balance weighing
designs. Suitable model we can write in the form:

y = Xw + g, Q)

where y is an nx 1 random observed vector of the recorded results of
weights, w is an p x 1 column vector representing the unknown weights of
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objects and c is an nx 1 random vector of errors. We assume that the
errors are equal correlated and they have the same variances, i.e. E(c) = 0,
and Var(e) = a2G, where 0, is the nx 1 column vector of zeros,

G = g[(I —p)L,,-I-pl,IA], where g> 0, -r—]—:—1< p < 1 are given constants.

For estimating individual unknown weights of the objects we can use
the normal equations

X'G~ IXfi = X'G-1y, @)

where w is the vector of the weights estimated by the least squares method.

The chemical balance weighing design is singular or nonsingular de-
pending on whether the matrix X'G_1X is singular or nonsingular, re-
spectively. If X'G ‘X is nonsingular, the least squares estimator of w is
given in the form

w= (X'G_1X)_1X'G_1ly ©)

and the variance-covariance matrix of w is given by formula
Var(w) = or2(X'G_1X)_1. 4)

In the case G = 1,, Hotelling (1944) has studied some problems con-
nected with chemical balance weighing designs. He has shown that for
a chemical balance weighing design the minimum attainable variance for
each of the estimated weights is a2/n. He proved the theorem that each of
the variance of the estimated weights attains the lover bound if and only
if X'X = nlp. This design is called the optimum chemical balance weighing
design. It implies that for the optimum chemical balance weighing design
the elements of matrix X there are -1 and 1, only. In this case several
methods of construction the optimum chemical balance weighing designs
are available in Raghavarao (1971) and Banerjee (1975). In the above
model of the optimum chemical balance weighing design with equal cor-
related errors Ceranka and Katulska (1998) gave the necessary and suf-
ficient conditions under which the lower bound of variance of the es-
timators was attained.

In this paper we study the similar problem of existing of the optimum
chemical balance weighing design with equal correlated errors under as-
sumption the elements of the design matrix X are equal to -1, 1 or 0.



2. VARIANCE LIMIT OF ESTIMATED WEIGHTS

Let assume that the positive definite matrix G is given as

G = 0[(1- p)I,, + PMA, 9> o. (5)

For the design matrix Xed nxp,7(-1, 0, 1) and G in (5) Ceranka and
Graczyk (2003) have showed the following theorem.

Theorem 1. In the nonsingular chemical balance weighing design with
the design matrix Xe®d axp (-1, 0, 1) and with the variance-covariance
matrix of errors er2G, where G is given by (5), the variance of each of the
estimated measurements of objects w can not be less then

[029(\'p) if O/\p<|,
J: 11 21 pv
where m = max {m,, m2, mp}, n\j is the number of objects equal to -1
and 1 in y-th column of X, u= min{ul5 u2, «}, Uj is the number of
elements equal to -1 in y-th column of X, j = 1, 2, p.

Definition 1. Any nonsingular chemical balance weighing design with the
design matrix Xe® naxp>1(-1, 0, 1) and with the variance-covariance matrix
of errors a2G, where the matrix G is of the form (5), is optimal if the
variance of each of the estimators attain the lower bound, i.e. if

{o2g {\-P) if 0<p<1,

if —~ <p< 0,
1P

Theorem 2. Let 0<p<I1. Any nonsingular chemical balance weighing
design with the design matrix Xe® 9Xp,7(-1, 0, 1) and with the variance-
covariance matrix of errors c2G, where the matrix G is of the form (5),
is optimal if and only if



(i) X'X = ml,
and

(i) X', = Qo

'rheorcm 3. Let--—-- i< p < 0. Any nonsingular chemical balance weighing
n_

design with the design matrix Xe® nxp,7(-1, 0, 1) and with the variance-
covariance matrix of errors a2G, where the matrix G is of the form (5),
is optimal if and only if

(i) uL= u2= .. = b—mn
and
(iii) X'In= zp

where zp is p x 1 vector, for which the j-th element is equal (m- 2u) or
-<m-2u), j = 1,2, .., p.

In the next section we will construct the design matrix
Xednxp 7(-1, 0, 1) of the optimum chemical balance weighing design with
G of the form (5) using the incidence matrices of the balanced incomplete
block designs and the balanced bipartite weighing designs.

3. BALANCED BLOCK DESIGNS

In this section we remind the definitions of the balanced incomplete
block design given in Raghavarao (1971) and of the balanced bipartite
weighing design given in Huang (1976).

A balanced incomplete block design there is an arrangement of v treat-
ments into b blocks, each of size k, in such a way, that each treatment
occurs at most ones in each block, occurs in exactly r blocks and every
pair of treatments occurs together in exactly X blocks. The integers v, b,
r, K, X are called the parameters of the balanced incomplete block design.
Let N be the incidence matrix of balanced incomplete block design. It is
straightforward to verify that



vr = bk,
A(v—1) = r(fc—1), (6)
NN' = (r—A)l,+ ALy,

where lvis the vx 1 vector of units.

A balanced bipartite weighing design there is an arrangement of v treat-
ments in b blocks such that each block containing k distinct treatments is
divided into 2 subblocks containing ky and k2 treatments, respectively, where
K = kl + k2. Each treatment appears in r blocks. Every pair of treatments
from different subblocks appears together in blocks and every pair of
treatments from the same subblock appears together in JR2 blocks. The
integers v, b, r, kit k2, JP are called the parameters of the balanced
bipartite weighing design. Let N* be the incidence matrix of such a design.
The parameters are not independent and they are related by the following
identities

vr = bk,

, Aiv(v~ 0
2ktk2

XNjk.-D +k”™-i)]
2~ 2k, k2

X, k{y- 1)
r~ 2k,k2

N*N*' = (r - - AD)lv+ + a2 iu;.

4. THE DESIGN MATRIX

In this section we will present new method of construction of the design
matrix Xe® nxp>T(-1, 0, 1) of the optimum chemical balance weighing design.
It is based on the incidence matrices of the balanced incomplete block
designs and of the balanced bipartite weighing designs under assumption
that the errors are correlated with equal variances.

Let N x be the incidence matrix of the balanced incomplete block design
with parameters v, bit rI5 kit X1. And let N2 be the incidence matrix of
balanced bipartite block design with parameters v, b2, r2, ki2, k22, /12, 2.
Using this matrix we built the matrix N2 by replacing fcu elements equal
to +1 of each column which correspond to the elements belonging to the



first subblock by -1. Then each column of the matrix N2 contains
kl2 elements equal to -1, k22 elements equal to 1 and v-kl2 —k22 elements
equal to 0. Hence X6®nxp 1(-1, 0, 1) is of the form

(8)

In such a design we determine unknown measurements of p = v objects.
Each object is weighed m = hl + r2 times in n= bt + b2 measurement ope-
rations. Because G is the positive definite matrix then X'G_1X is nonsingular
if and only if X'X is nonsingular. Hence we have the following lemma.

Lemma 1. Chemical balance weighing design with the matrix
Xed axp>1(-1, 0, 1) given by the form in (8) is nonsingular if and only if

v ® 2fcj
or

ProOf. The thesis is the consequence of the equalities

X'X = [4(rt- A+ r2- X22+ ALZJIv+ Bol - 4(rt- AL + A2- F1211X  (9)

and

(10

For 0< p< 1 and Xe® nxp,7(-1, 0, 1) in the form (8) we consider the
optimality conditions given in the Theorem 2. From (i) of Theorem 2. it
derivers that bl —4(rj —AJ + ).22—A12 = 0 and from (ii) when kI2 ® k22 we
X12(v ~ 1)("22 ~

2kl2k22

Theorem 4. Any chemical balance weighing design with the matrix
Xed nxp,7(-1, 0, 1) given in (8), for which k12 k22, and with the variance-
covariance matrix of errors a2G, where the matrix G is of the form (5),
is optimal for the estimation of individual unknown measurements of objects
if and only if

have hl —2r M2) _ 0. Thus we get the following theorm.

(i) fel-4(r1-A+ (;22-A12) =0

and



Corollary 1. Let 0~ p <. If the parameters of the balanced incomplete
block designs and the balanced bipartite weighing designs are equal to

@iy v= 12, = 33, ri —11, /cj = 4, =3 and v= 12, h2= 66, r2= 33,
kl2 =2, k22= 4, 2 =8, i22=T;

(ii) v= 15 by =42, Tj= 14, kl =5, & =4 and v= 15, b2= 105, r2= 56,
kl2 = 3, k22 =5, d12 = 15, A22= 13;

(iii) v= 16, hl = 40, r, = 15, /c, = 6, $ix= 5 and v= 16, b2= 80, r2= 20,
A2 = U r22 ~ 3, 1\2= 2, $2 = 2;

(iv) v= 25, b = 40, rx= 16, fegj = 10, = 6 and v= 25, b2 = 100, r2 —16,
kl2 =1, ko2 =3, A12=1, 922= L

then Xe®d nxp (-1, 0, 1) in the form (8) is the design matrix of the optimum
chemical balance weighing design with the variance-covariance matrix of
errors a2G, where the matrix G is of the form (5).

Now, we consider the case —n—----1<p<0.

Theorem 5. If————--1< p<0 and k12¢ k12 then any nonsingular chemical
n_

balance weighing design with the design matrix Xe® nxp>1(-1, 0, 1) given
by the form in (8) with the variance-covariance matrix of errors a2G, where
the matrix G is of the form (5), is optimal for the estimation of individual
unknown measurements of objects if and only if

bi ~ 4(rt —Xj) + A22—4A12
(2rx—bl4-r22 —rl2)2 —(>! + b2 —1)(/>! —4(rt —5X) + o2 —HA12)

and
bl —4(Ij —X¥) + L2—A12< 0,
Al2(v-1) Al2(v-1)
where r12 = —rr--—-- , 2= —— , n= bl + b2
ZK22 -£*12
Proof. From Theorem 3 it derivers that if I-< p < 0, then chemical

balance weighing design Xe® nxp>1(-1, 0, 1) is optimal for the matrix a2G,
where G is of (5), if and only if the conditions (i)—iii) are fulfilled.
Hence from the condition (iii) we get c]X'ln—m —2u or -(m —2u),
y=1,2, ..., p, where m—2u = 2rl —bj + r22 —r12, vector Cj is equal to the
y-th column of the identity matrix. From the condition (i) in Theorem 3.
and from (10) it derivers cjX'Xc;=  —A4(rx—a"+ Arr—412, i~j, and



by —4(rx —AX) -f A22 —A12 = -— —--—— The last relation implies p < 0 be-

1+p(n- 1’
cause —A4(rt —A]j) + 422 —A12< 0. Hence the thesis.
Theorem 6. Let -— - <p < 0. If for a given v and p the parameters of

the balanced incomplete block design and of the balanced bipartite weighing
design are equal to

3
(i) 9 =2(20s2+ 5s5-4)" V=4S bi = 2(4s" M =4s” kl= 2s’
At =2s—1 and v=4s, b2=2s(ds—1), r2= 3(4s—1), kl2 =2,
kzi —4, A2=8, AZ2=7,s=2, 3, ..,

(i) P=2(6s2+ 7s+ 1)’ V=4s+ 1" hl =2(4s+ 1}y Tl = 4s Kkl = 2s
Ax=2s- land v=4s+ 1, b2—2s(4s+ 1), r2= 16s, kl2 = 3, k22 = 5,
Al2 = 15, A22= 13, s= 2, 3, ..., 4s+1 is prime or prime power,

3

(w) P = 2852+_225+ 77 v=A4s+ 1> bi=2@s+ )" rt=4s> ki= 25>
Ax= 2s—1 and v=4s+ 1 b2= 2s(4s+ 1), r2=6s, kl2=1, k2= 2,

A2=2 A2=1 s=2 3,.., 45+ 1 is prime or prime power,
-3
(iv) P=i352+ 23s+ 7* V= 45+ hl = 2(4S + T =4s’ kIl = 2s’
At = 2s—1 and v=4s+l, b2=s(4s+ 1), r2=5s, k12= 2, k2= 3,
A2=3 A2=2 s=2,3, .., 4s+ 1 is prime or prime power,

(V) P=40s2+14s +r v=4s+1’ bi=2(4s+l), rl =4s, [c, = 2s,
Al = 2s—1land v=4s+ 1, 2= 2s(4s+ 1), r2= 12s, kl2 = 2, k22 = 4,
Al2=8 A2=17, s= 3,4, .., 4s+ 1 is prime or prime power,

(M) P= 1652+ 2s+ 3" v=r4s+1’ bi=2(4s+l), Ty=4s, ky= 2s,
Ax=2s- land v=4s+ 1, b2= 2s(4s-t-1), r2= 8s, kl2 = 1, f22 = 3,
Ai2 = 3, A22= 3, s= 3,4, .., 4s-- 1 is prime or prime power,

(vii) P= 13s2 _ 3g, v=4s+ 1, by=2(4s+1), rt=4s, ky=2s,
Aj = 2s—1 and v=4s+ 1, b2=s(4s+ 1), r2=5s, kl2 =1, k22=4,
A2=2 A2=3, s= 12, .., 4s+ 1 is prime or prime power,

(viii) P = 44s2_ 14s+ 5> v=4s+1, by = 2(4s+ 1), Ty= 4s, ky = 2s,

Al = 2s- 1and v=4s+ 1, b2= 2s(4s+ 1), r2= 14s, ki2 = 2, 22 = 5,
Ai2 = 10, A2 = 11, s= 2, 3, ..., 4s+ 1 is prime or prime power,



(ix) p = 2 v=4s+ 3, bl =4s+ 3, rt=2s+l, fe~Zs+l,
10s + 14s+ j

=s and v=4s+ 3, b2= (2s+ I)(4s-f3), r2= 3(2s+l), k2= 1

k22= 2, A12= 2, 2= 1,s= 1,2, .., 4s+ 3 is prime or prime power,

-2
X)) p="™i + 36s+ v=4s+ 3, b1=45+ 3, rl= 2s+Il, kl = 2s+1,

At=s and v=4s+ 3, b2= (2s+ I)(4s+ 3), r2= 6(2s-1-1), kl2 = 2,
K22 = 4, AI2=8, A2=7,s=1, 2, ..., 4s+ 3 is prime or prime power,

Xi>p=202?TL T3)" v=4s+ 3" N =“"+3, ri=2s+1, k,-25+1,
A =s and v=4s+ 3, b2= (2s+ I)(4s+ 3), r2= 4(2s+l), ki2= 1,
k22= 3, Al2= 3, A2 =3,s= 1, 2, ..., 4s-f 3 is prime or prime power,

(*ii) P= 4Qs2+ 68s+79” v=8s+ 7, fa = 8+ 7, rj=4s+ 3, kt =4s + 3

Ax=2s+1 and v=8s+7, b2= (4s+ 3)(Bs+7), r2= 3(4s+ 3),
K\2= 1 k2=2, Ai2=2 A2=1s=1,2, ..,

(xL) p = 128sa+ioO8+ ra’ -- 8+ 7. b, = 85+ 7, r, = 45+ 3, k, - 4S+ 3,

At=2s+ 1 and v=8s+ 7, b2= (4s--3)(8s+ 7), r2= 6(4s+ 3),
ky2= 2, k22=4, A12=8, A 2= 7, s= 1, 2......

(xiV) p = 2(483*+ 70s+ 26)"'v=8s+ 7, b, = 85+ 7, r, = 4»+ 3. k, = 45+ 3.
Aj=2s+1 and v=28s--7, b2= (4s+ 3)(8s--7), r2= 4(4s+ 3),
ki2 =1, ~22=3, Al2= 3, A2=3,s=1, 2, ...,

(Xv) p = 1Qs4 _6s2 ,~|» v=4s2- 1, b, =4s2- 1 rt=2s2- 1, [c, = 252- 1,

Ax=s2—1 and v= 4s2—1, b2= (2s2—I1)(4s2—1), r2= 3(25s2—1),
kl2=1, k22=2, A2= 2, A2 —1,s=2,3, ...,

(xvi) p = 3272 _~20sz+ 7’ v = 4sa—1, b,-4S2-1, r,=2r-1,

kj = 2s2—1, A =s52—1 and v=4s2—1 b2= (25s2—I)(4s52—1),
rz = 6(2s2—1), /Ic12= 2, /o2 =4, Aj2=8, A2=7,s=1, 2, ..,

(xvii>*, -~ 2§ - IL"+4)" -=4s2- 1- J, =4"-1, ri = 2s2—1,
kl = 2s2—1, Ax=s2—1 and v=4s2—1 f2= (2s2—1)(4s2—1),
r2=4(2s2—1), kl2=1, k22=3, A2=3, A2=3,s5s=1, 2, ...,

(xviii) p = 2(12s*-55s>+2¢12,-Ss I+ 2s,y T N be* 4«
ri= i(2s —1, kl =s(2s—1), A = (s —1) and v= 4s2
b2 = 2s2(4s2- 1), r2= 3(4s2—1), kl2=2, k22=4, Al2= 8§,
A2=71t s=2,3, .., i>s,



X)) ', - 4t0f+16.>-*>-4.-T v=4s!l- b‘=4s*’ ', = 2si+s.
kt = 252+ s, Al=sz+ s and Vv = 4s2, b2 = 4s2(4s2- 1),
r2= 342—1), kiz=1, k2=2, A12=4, 92 =1 s=1, 2, ...,

XX>N% & - 1N -1 7+4,-1" v = 4s2' b' = 4s2- =
ky = 2s2-s, Xy = s2- s and v= 4s2, b2 = 4v2(4s2- 1), r2= 3(4s2- 1),
Ki2 = »» k2=2, Al2=4, 92=1s=1, 2, ...,

OXN) P=2KItf-8"-5+2) V=4s2" h"'= 4s*-r*= 2,2->¢ k>~ 2,2- s’
Xy =s2-s and v=4s2, b2= 2s2(4s2- 1), r2- 3(4s2- 1), k12= 2,
n22 —4, A2= 8, $b2=17,s=1, 2, ...,

(xxii) p =~ (12s3+ 8s2_s_ 2)» v=4s2>bi = 4s2>rt = 252+ s,ky = 252+ s,

Al = s2+s and v= 4s2, b2= 2s24s2—1), r2= 3(4s2—1), klI2 = 2,
np2 = 4, A12=8, $ho=7, s= 1, 2, ...,

(xxiii) p —"20gs2 24s_ j]’ v=12s> = 2(12s—1), rx= 12s—1, fcj = 6s,

fj = 65—1 and v=12s, b2= 12s(12s —1), r2 = 3(12s—1), fcl2 = 1,
k2=2 d12=4, $ho=2,s=1 2, ..,

(xxiiv) p = 416s4+ 20s + 5 V= 40s+ |’ bl= 2M0s+ ri = 40s’ fd = 20s>
Xy=20s- 1 and v=40s+ 1, b2= 4s(40s+ 1), r2= 24s, k12= 1,
k2=5, Al2=1 w2=2, s= 1,2, .., 40s-f1 is prime or prime
power,

then the chemical balance weighing design with the design matrix
Xe®axp,7(-1, 0, 1) given by the form in (8) with the variance - cova-
riance matrix of errors a2G, where the matrix G is of the form (5), is
optimal for the estimation of individual unknown measurements of ob-
jects.

5. THE EXAMPLE

Let us consider the experiment in which we want to determine the
unknown measurements of p = 1 objects using n= 28 operations. We
additionally assume that each object is weighed at least m = 16 times and

the parameter p = Let NL be the incidence matrix of the balanced

incomplete block design with parameters v= 7, by~=l, Ty=3, ky = 3,



Aj = 1 and N* be the incidence matrix of the balanced bipartite weighing
design with the parameters v=7, b2=21, r2=9, k2= 1. 22 = 2,
A2=2 A2=1

1000101
1100010
0110001
Nx= 10 110 01
010 110 O
0010 110
0001011

Moo 1200 92140320 1200 ;p 0000 321
21100 120 0 0 0 120 120 12 4 0 0 0 0 1
0 Moo 120000 120 1212122902000
n;=00 12291100 121200 |x0 120 0 12129 000
120 0 12100 0 120 0 33 0 120 0 1212110 O
0 120 0 12110 120 120 0 |x0 0 0 0 1212110
00 400 129 0 120 400 jy 0000 92121

where Ix and 12 denote the object belonging to the first and second
subblock, respectively. Then we form the design matrix X = ‘n (8)

(cf. Theorem 6(ix)), where

and



1 0010011 010 100-1 000011
11 001000-1010101-1 00001
011 001000101011 11 0000
0011 001100101001 11000
10011 0001001 0100111 00
010011 010100-1000011-1 0
,0010011 0101001 0000111
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Bronislaw Ceranka, Matgorzata Graczyk

ZROWNOWAZONE UKLADY BLOKOW W OPTYMALNYCH CHEMICZNYCH
UKLADACH WAGOWYCH Z ROWNYMI KORELACJAMI BLEDOW

(Streszczenie)

W artykule rozwaza sie zagadnienie estymacji nieznanych miar poszczegdlnych obiektéw
w chemicznym uktadzie wagowym. Zakiada sie, ze nie w kazdej operacji pomiaru wszystkie
przedmioty sa uwzgledniane oraz ze bledy maja jednakowe wariancje i sa rowno skorelowane.
Podane zostaty warunki konieczne i dostateczne, przy spetnieniu ktérych wariancja estymatoréw
osigga dolne ograniczenie. Do konstrukcji macierzy uktadu przy podanych wyzej zatozeniach
wykorzystuje sie macierze incydencji uktadéw zréwnowazonych o blokach niekompletnych
i dwudzielnych uktadéw blokow.



