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Abstract

Classic theory of statistical inference gives us methods and verification of hypothesis for
simple samples (observations are stochastically independent and have the same distribution).
Because of costs and effectiveness of research we use simple samples. Observations in these
samples are stochastically dependent and have different distribution.

The paper presents problems in estimation and verifications of hypothesis of consistency
of distributions for complex samples.
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I. INTRODUCTION

Classic theory of statistical inference provides us estimation methods of
unknown distribution parameters estimating the form of function which
defines this distribution and hypotheses verification on the grounds of simple
samples, that is such hypotheses in which observations are stochastically
independent and have the same probability distribution. In general, however,
we use complex samples with regard to costs and efficiency of research.
Results of observations in these samples are realizations of stochastically
dependent variates of various distributions. In representative research we
distinguish among others the following schemes:

- dependent sampling (without replacement) with various choice proba-
bilities,

- stratified sampling,

- cluster sampling,

- cluster and multistage sampling.



For example, sampling without replacement eliminates stochastic indepen-
dence of observation, stratification proccss causes diversification of choice
probabilities of sample elements but multistage sampling influcnccs the
diversification of distribution.

This paper deals with problems connected with estimation, especially
adaptation of methods of central limit theorem for complcx samples and
verification of goodness of fit for complcx samples.

II. LIMIT THEOREMS

Representative method deals with procedures of sampling from finite
populations and estimating on the grounds of obtained samples of un-
known parameters in these populations. Since populations are finite,
therefore samples must also be finite. What is more, if N - denotes
the size of general population and n - sample size, then it is very
reasonable to consider these situations in which n< N (cases when n= N
are not the object of interest of sampling method). Economic and or-
ganizational considerations force statisticians to replace simple samples
(simple sample means that each observation has the same distribution
as the distribution of investigated variable in population) with complex
samples. This fact makes using limit theorems for complex samples im-
possible.

In case of sampling without replacement the condition n <N must be
satisfied. That is why we can not use limit theorems known from probability
calculus in which it is assumed that n —* oo. We will mention here Lindeberg-
Feller theorem, see Fisz (1967).

Theorem 1 (Lindeberg-Feller). Let {¥*}/c = 1,2,...) be the sequence of
independent variables. Let uk and rk> 0 denote an expected value and
a standard deviation respectively and Gk(y) - its distribution function.

and Fn(z) denotes distribution function of variate Z,,.



Necessary and sufficient condition to

€
is the following relation for any e> 0
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Instead of formula (2) we will use the following:
Zn (3)

In sampling scheme with probability proportional to value of characteristic
Y with replacement, although general population is finite we can use
Lindeberg-Fellcr theorem. On the grounds of this theorem it can be proved
that Hansen-llurwitz estimator has, see Bracha (1998), with n —% 0o normal
distribution. Let us note that n can be optionally large (sample units can
be optionally large and in addition variables Yi and Y, (i®i') can be
independent (sampling without replacement).

In case when n<N and variates are independent and as a consequence
we can not use Lindeberg-Feller theorem to estimate of average value of
population.

Difficulties arising from the assumption n< N and variables interdepen-
dence as the first tried to solve Madow (1948). He considered, instead given
population U, population sequence {{/,}, which was generated by multiple
reproduction of particular elements from population U, under the assumption
that both size of these populations and samples sizes, which are sampled
from them tend to infinity, that is by ox oo, NO—»o00, n0—moc and

Hajek (1960) reformulated Madow theorem which can be shown as
follows:, see also Erdds i Reéyi (1959).
Theorem 2 (Lindeberg-Feller-Hajek). There is given a population sequence

{W -b where
ilv= {yvil>...,y v} (4)

corresponding sequence {¥,}®=1, where ¥,= (¥Y,b YW)T, and also data
sequence

Mv=i, where dv= {yw

and corresponding sequences of general terms
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Let Un be for e> 0 subset of set i/vand let its elements satisfy a condition
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when nv—> 00, Nv —»nv—%o00 for v= oo.
Necessary and sufficient condition to
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(this relation is called Lindeberga-Hajek condition).

Scott and Wu (1981) proved further features of estimators in case of
simple sampling without replacement.

Theorem 3 (Scott-Wu). If the following condition is satisfied

<»>
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then for e> 0

limP{|lyt—yj <£}= 1
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Often instead of equality (12) we use the following formula:
(Fv-X)no0.

Theorem 2 shows that average from the sample which was sampled
according to simple sample without replacement scheme is compatible with
estimator of average V.

Hajek (1964) proposed rejective sampling procedure for the scheme of
sampling with probabilities proportional to the value characteristic ¥ without

X
replacement. This schemc proves that for given Pj —”" there are determined

by the sizes a, being function pj and fulfilling a condition
N
I aJ=1
j=1
Next, units arc sampled with replacement and choice probabilities in each
drawing proportional to ay If sample contains n various units, then the
sample is accepted. But if some units repeat then the whole sample is
rejected and the new sample is sampled.

Rosén (1972) proved ccntral limit theorem for Horvitz-Thompson estimator
based on random sequence sample. These analyses are performed by many
researchers by means of both analytic and simulated methods, see for example
Bracha (1990; 1998). On the grounds of results of these research authors
suggest high caution in drawing conclusions about distribution compatibility
of considered estimators with normal distribution.

I1l. x2 TEST OF GOODNESS OF FIT FOR COMPLEX SAMPLES

Let variate X take values belonging to k(k > 2) separable intervals. Let
us denote by pt probability that variable X takes valllues from i-value interval

and at the same time p,>0 for i= 1, ..., k and Y.Pi ='s On grounds
i=1
of simple sample the hypothesis must be verified:

A0:P = PO
towards to alternative hypothesis:
A0:P*P0>

where: p = =1...*-b Po is (k—1) dimensional vector of hypothetical
probabilities connected with p(p0= [Poi];=i.... *-i)-



To verify hypothesis 110 it is proposed to use matrix statistics, sec for
example Rao (1982).

f = n(0- Po)7Po 4P - Po), (13)

where:
PO = diag(p0) - popj, p = [Pl]i=l....*-i (14)

and at the same time pi is unbiased estimator Pi.
Under the assumption that veracity of hypothesis 11Q statistics given by
formula (13) has asymptotic distribution x2 of Kk — 1 degrees of freedom.
For complcx samples Holt and others (1980) showed modifications of
X2 goodness of fit statistics which has the following form:

X2=T (15>
where:
, n *VB 2(Pi)
‘- M Z f <6>

and at the same time D(pt) denote variance estimators of investigated
characteristic which are suitable for particular sampling scheme. Taking
into account a variance of hypothesis 110 statistics (15) has x 2 distribution
of (fc—1) degrees of freedom. We reject hypothesis HQon the significance
level a, if inequality x I~ x| proceeds.

In case when k —2, we verify hypothesis HO:p = p0 against alternative

hypothesis Hy\p®p0 by means of statistics, see for example Bracha
(1998).

2 » - P°)t (17)

D 2(p) 1

where p is estimator p.

Statistics (17) by the veracity of hypothesis HO has for big values
n distribution close to distribution x2 of one goodness of fit.

We made a few experiments using Monte Carlo method for complex
samples investigating sizes of x2 test and its modification x\- 1Q the first



experiment we were comparing sizes of investigated tests for complex samples
(non-returnable sampling) in finite population of normal distribution with
demanded parameters for N = 1000, 2000, 10 000. On the ground of sampled
samples we were verifying simple hypothesis HO, that sample comes from
population of normal distribution by means of classic test w} and modified
x\ taking into consideration sampling scheme effect. The investigation was
made for dozen or so variants of classes division of sample results for
example number of classes. N = 1000 k = 4, 5, 6, 8, 10, 12, 15, 20 adequately
to size of sample which fulfils conditions of convergence statistics x 2 towards
distribution x2>sec Romanski (1990). The investigation was made for
g = 10 000 repetitions.

In Table 1 we illustrated sizes of considered tests for three significance
levels a = 0.10; 0.05; 0.01 and number of degrees of freedom (Iss = 7) for
N = 1000, 2000 and Iss= 14 for N = 10 000. On the contrary in Table 2
for N = 1000 we presented considered tests sizes for (Iss = 2, 4, 6) depending
on number of degrees of freedom.

IV. CONCLUSIONS

L The size of test y} for N = 1000 in all cases exceeds assumed significance
levels and on the contrary modified test x| does not exceed assumptcd
significance levels a = 0.10 and a = 0.05, and also generally for a = 0.01.
We obtained similar results for N= 10 000 (see Table 1).

Tabic 1. Comparison of size of x2 goodness of fit with modified test x2 for complex samples
sampled from finite populations of normal distribution for N = 1000, 2000, 10 000 Iss —(k— 1)
degrees of freedom

Significance level
n sample

. a = 0.10 a = 0.05 a= 0.01
size
X2 4 4 x1
N = 1000 (Iss = 7)

40 0.136 0.091 0.071 0.046 0.020 0.010
50 0.128 0.086 0.071 0.046 0.023 0.012
60 0.123 0.085 0.068 0.047 0.018 0.008
70 0.111 0.078 0.067 0.040 0.020 0.013
80 0.105 0.081 0.064 0.042 0.017 0.013
90 0.116 0.090 0.057 0.041 0.014 0.009
100 0.106 0.092 0.062 0.053 0.014 0.010

120 0.111 0.090 0.059 0.048 0.016 0.008



Table 1. (contd.)

Significance level

n sample
. P a = 0.10 a = 0.05 a= 001
size
x1 *2 xl *2
N = 2000 (Iss = 7)
50 0.128 0.089 0.064 0.042 0.021 0.012
100 0.102 0.071 0.057 0.034 0.015 0.009
150 0.097 0.082 0.054 0.043 0.010 0.007
200 0.076 0.057 0.033 0.025 0.005 0.005
300 0.083 0.087 0.051 0.052 0.009 0.010
N = 10 000 (lss = 14)

200 0.134 0.104 0.081 0.062 0.024 0.012
300 0.116 0.088 0.068 0.053 0.021 0.014
400 0.125 0.106 0.075 0.063 0.010 0.007
500 0.103 0.097 0.049 0.046 0.014 0.009

Source: Own calculations.

2. With the increase of number of degrees of freedom in general size
of classic test x2 more and more stands off obtained significance level and,
on the contrary, with the increase of number of freedom, size of modified
tests xI more and more approach the assumed significance level (see Table 2).

Table 2. Comparison of size of y} goodness of Tit with modified test x\ for complex samples
sampled from finite populations of normal distribution for N = 1000 depending on number
of degrees of freedom Iss= 2, 4, 6

Significance level
n sample

i a=0.10 a—0.05 q= 001
size
t X1 X* Xl
Iss = 2
10 0.1145 0.0593 0.0670 0.0318 0.0192 0.0093
15 0.1095 0.0490 0.0612 0.0259 0.0160 0.0070
20 0.1026 0.0497 0.0540 0.0221 0.0147 0.0064
30 0.0979 0.0427 0.0502 0.0202 0.0119 0.0046
40 0.0871 0.0375 0.0441 0.0188 0.0104 0.0040
50 0.0857 0.0379 0.0425 0.0178 0.0084 0.0036
100 0.0722 0.0367 0.0319 0.0163 0.0058 0.0027
Iss = 4
15 0.1398 0.0831 0.0813 0.0452 0.0263 0.0128

20 0.1272 0.0756 0.0737 0.0406 0.0224 0.0105



Table 2. (contd.)

Significance level

|
n Sa.mp ¢ a=0.10 a = 0.05 a= 001
size
X2 X A
Iss = 4
30 0.1204 0.0730 0.0699 0.0368 0.0215 0.0096
40 0.1237 0.0768 0.0682 0.0384 0.0208 0.0101
50 0.1163 0.0715 0.0651 0.0408 0.0187 0.0105
100 0.1056 0.0727 0.0533 0.0367 0.0139 0.0082
Iss = 6
20 0.1516 0.0982 0.0906 0.0533 0.0331 0.0167
30 0.1405 0.0930 0.0851 0.0506 0.0285 0.0143
40 0.1327 0.0883 0.0779 0.0492 0.0249 0.0138
50 0.1213 0.0857 0.0727 0.0463 0.0222 0.0119
100 0.1161 0.0934 0.0625 0.0492 0.0160 0.0122

Source: Own calculations.

Summing up, it has to be emphasised that on this stage for complex
sample (dependent sampling) classic x2 test of goodness of fit in general
gives in assumed cases insatiable indications in relation to hypothesis
verification. Most often in sampling without replacement real error of the
first type considerably exceeds obtained significance level a.

From the experience gathered so far it follows that assumed test should
be investigated for simple and complex samples. Therefore, some postulates
of many authors who refer to rules of applying x2 should be verified.
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Czeslaw Domanski

UWAGI O WNIOSKOWANIU STATYSTYCZNYM DILA PROB NIEPROSTYCH

Streszczenie

Klasyczna teoria wnioskowania statystycznego dostarcza nam metod estymacji nieznanych
parametréw rozktadu, szacowanie postaci funkcji okre$lajacej ten rozktad oraz weryfikacje
hipotez na podstawie préb prostych, tzn. takich, w ktérych obserwacje sa niezalezne i majg
ten sam rozktad prawdopodobienistwa. Na ogo6t jednak ze wzgledu na koszty i efektywnosé
badan postugujemy sie prébami nieprostymi lub ztozonymi (complex samples). Wyniki obserwacji
w tych prébach sg realizacjami stochastycznie zaleznych zmiennych losowych o réznych
rozktadach. W badaniach reprezentacyjnych wyrézniamy miedzy innymi nastepujace schematy:
losowanie zalezne (bez zwracania), losowanie z réznymi prawdopodobienstwami wyboru,
warstwowe, zespotowe i wielostopniowe. Przyktadowo, losowanie bez zwracania eliminuje
stochastyczng niezalezno$¢ obserwacji, proces warstwowania zréznicowanie prawdopodobienstw
wyboru elementéw préby, natomiast losowanie wielostopniowe wpltywa na réznorodnos¢
rozktadow.

Przedmiotem tej pracy sg problemy zwigzane z estymacja (metody adaptacji centralnego
twierdzenia granicznego dla préb nieprostych) oraz weryfikacja hipotez o zgodnos$ci rozktadow
dla préb nieprostych.



