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Abstract

An example o f the application o f point processes observed with noise are aerial photographs 
o f forests with the  aim  of estim ating the actual num ber o f  trees on a  given area. Lund and 
R udem o (2000) proposed a  m odel useful in this context, basing on the num ber o f “ trees 
candidates” visible on the photograph . The param eters o f conditional likelihood function were 
estim ated taking in to  account such variations o f noise as poin ts thinning, po in ts displacem ent 
and appearing  o f extra  ghost points. T he approach proposed does no t solve the problem  o f 
the estim ation o f  the actual num ber o f trees.

In this paper a new algorithm  to  estim ate directly the num ber o f  actual trees is proposed. 
The only assum ption on which the new measure depends is the  natural assum ption about 
forest density  being locally constant. The results achieved with the help o f  the new measure 
m ay be assessed as interesting.

Key words: po in t process, m aximum likelihood m ethod, noise, incom plete observation, 
image da ta , com puter algorithm .

1. IN T R O D U C T IO N

Figure 1 depicts a m ap o f a part o f a forest with 206 small circles and 
171 dots. The dots were found on the basis o f an aerial photograph of 
this part o f the forest with the help of a tem plate constructed by Larsen 
and Rudem o (1998) and they represent candidates for trees (Norway spruce). 
Basically, the idea o f the tem plate construction is to choose pixels from 
black-and-white photograph the ellipse neighbourhood o f which gives suitably 
high correlation between the shades of the grey colour o f the neighbourhood 
pixels and the shades o f grey o f the ideal tem plate. T he dots represent 
pixels for which the correlation was high enough. T he circles represent true
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trees found in the same region of the forest by m anual inspection. One 
pixel on the photograph corresponds to ground area o f  0 .1 5 x 0 .1 5  m 2.

Figure 1. T rue tree tops (dots) and candidates for trees (circles)

The statistician’s task is to  investigate all the phenom ena influencing the 
picture that wc arrive at in connection with the true num ber o f trees that 
grow on the area being photographed and, if possible, to  estim ate the 
num ber of trees from the num ber o f candidates. Lund and Rudem o (2000) 
propose an approach the idea o f which is to trea t trees candidates as 
realisations of a point proccss contam inated by noise o f different kinds. 
The au thors found the conditional likelihood function and analysed its 
behaviour to  estim ate some interesting param eters. This approach is briefly 
outlined in the next section. However, the m entioned approach, though 
m athem atically elegant does not answer the question that is m ost interesting 
to forest m en and ecologists i.e. what is the approxim ate num ber of true 
trees? In the third scction wc propose a new m easure which tries to  tackle 
this problem  directly.

II. PO IN T  PR O C E S SE S W ITH  N O ISE

Lund and Rudem o proposed to consider two point processes, one of 
which i.e. Y  is an imperfect observation of the other process X.  We assume 
that X  and Y  arc point processes on a subset A o f á-dim ensional Euclidean 
spacc R d with a finite num ber of points, X  = { X ^ . i e M } ,  M  =  {1, m},  
Y = { Y j : j e N } ,  N  =  {1, n}. Assume further that A  is bounded with



a positive d-dimensional volume \Ad\. Suppose tha t У is generated from 
the X  process by the following disturbance mechanisms.

1. Thinning. Each point X„  for ie M , is thinned with probability 1 -  p( XJ  
and retained with probability p ( X t). If an X  point is thinned, then there 
will be any corresponding Y  point. Thinings are assumed to be independent 
for different points.

2. Displacement. For each remaining point X t a corresponding Y,  point 
is generated by displacement to a position with probability density k ( ■ |X .) 
with respect to Lebesgue m easure on R* Given X ,  the displacements of 
different points are independent, m utually and of the thinnings.

3. Censoring. The displaced points arc observed if they are within the 
observation region A; otherwise they are censored and not observed. Thus 
censoring o f an unthinned point generated by X t occurs with probability 
$A'k(y\Xi)dy. Here A c denotes the com plem ent o f the set A.

4. Superposition of ghost points. In addition to the points generated as 
described above we have superposition of extra “ ghost” points. These points 
are assumed to  arise from a Poisson process on A  with intensity ( IX.) 
where X ,  as above, denotes the entire X-process.
The initial and basic result is the following theorem  which gives formula 
for the conditional probability o f a point process Y  given another process X .

ľheorem 1. Let X  and У be two finite point processes as specified 
above, on a bounded set A. Suppose that g(y \X)  and k ( y |Х ;) for i e M ,  
are continuous functions o f y e  A.  Then the conditional likelihood of 
У given X  is

L ( Y \ X )  = e x p { \ A \ d - $ Ag(y \X)dy}  £  Z  L i L 2L 3, (1)
M , S M  neP( M, , A, )
N t s  N

where

U  =  П  P ( X d K Y M0|Х (),
IeM  i

^2= П  { p i X i d L c k W d d y + l - p i X j }
ieMIAÍ!

L 3 =  П  9(Yj \X) ,
j e  iVlt fj

and the reference measure corresponds to the Poisson process on A with 
intensity 1. Looking a t this form ula we can see tha t all possible noise 
“com binations” were taken into account, because the symbol P ( M l t N J  
denotes all possible one-to-one m appings from M i to N t .



T he form uła given in Theorem  1 is too com plicated to  analyse in order 
to find its m axim ums, therefore, we can proceed with a couple o f simp
lifications. F irst simplification is that o f the hom ogenous intensity of the 
ghost points i.e. g ( ■ |ЛГ) =  A. Then the likelihood function (1) simplifies to

Ц У \ Х ) =  £  I  T ( M l t N l tn)  (2)
jWieAf itep(Af,,jV,)
|Af,| = |JV,|

with the summed term s given by

T ( M j, N l t n)  =  p |Af,'AiJV'JV*1 ex p { (l — A JI/IJ} ! П  K Y nW|X ,)
( . i e M ,

* Г1 {piAek(y\Xt)dy+ 1 - p } .  (3)

The second simplification refers to the fact that nearly all X t points are 
so far from the boundary of the observation region A  that we can safely 
assume tha t they are not censored i.e.

$Ack(y \X i)d y  =  0. (4)

In the first approxim ation o f (3) we assume that (4) holds for all X-points, 
and thus replace (3) by

exp{(i n  k y mí)\x A
U'eAf, J

(5)

F o r s = ( M l , N l , n)  note that (5) m ay be considered as a function o f the 
param eter vector

0 =  (6) 

and let us denote that it is maximised by the following vector

0(s) =  (p , 1 ,М1,М2^ х, а г,р)

where

p = \ M l \ / \M\ ,  X =  \ N \ N t \ / \Ad\, and (fi и 'цг, а  v, a 2,p)

are the standard m axim um  likelihood estimates o f the param eters in a two- 
dim ensional norm al distribution based on the sample (Y nW — X ;, i e M {).



Scarch for the maxim um  is still a problem atic task and we cope with 
it by considering the function value in all possible “neighbours of a considered 
state” . F o r state we define its neighbour ( M , , ^ , я ') if it can
be obtained from ( )  in one of the following five ways.

1. Addition of a pair of X-and У-points: M\  — M l u{i ' }  where i ' e M \ M l, 
N\  =  N t u {/'}, where j ' e N \ N = n(i), for i e M l and n'(i') =  / .  The 
num ber o f such neighbours is |M \A f1||7 V \N 1|.

2. Removal o f a pair o f X-and У-points: M \  =  AijXji'}, where i 'e M , ,  
N't =  jV1\{ /'} , where / e/V l5 я '(0  =  n(i), for i e M \  and n(i') = / .  This can 
be done in |А /( | =  |N , |  ways.

3. Sw apping an X -poin t: M \ =  ( M , \{ Г } )u { i"} , w here i 'e A ^  and 
i"e M \ M ,, N \ = N tn'(i) =  я (0 , for ie M ,\{ r '}  and n'(i") =  n(iÍ'). There are 
IM JIM X A fJ  such neighbours.

4. Swapping a У-point: M \, N \  =  ( N [ j " } ,  where j ' e N l and 
j " e N \ N l , я '(0  =  я(0, for iu M ,\{ i"} , where n(f )  =  /  and я '(0  =  j". Swapping 
a У-point can be done in INJ |Ar\N,| ways.

5. Exchange am ong two pairs: M \  =  M t , N \  — N \  = N lf я '(0  =  я (0 , for 
i e M l \ {i', i"}, where i ' e M l and i " e M l , fo r i' ф i", n '(i’) =  n(i') and 
n'(i") =  я(Г). T he num ber of such neighbours is IM jK M jI - l ) ^ .

Now we can search for the m aximum of function (2) by considering 
iteratively its value on all possible states each of which is a neighbour of 
some other state o f the previous iteration. In this way Lund and Rudem o 
found the m axim um  o f the conditional likelihood function and tried to 
investigate the behaviour o f this function. This approach, though quite 
attractive from  the m athem atical point of view, does no t solve the main 
problem  of estim ating the extent o f forest depletion on the basis o f the 
possessed noise version i.e. the У process realisation.

III. D IR EC T A SSESSM EN T O F FO R EST  D E PL E T IO N

Assessing intuitively the num ber of true trees one feels that the position 
o f false trees is not independent o f the position o f true trees (obviously it 
cannot be, e.g. both  cannot be located in the same positions) or, in other 
words, the average distance between false tree and the nearest tree (either 
false or true) is smaller than the same distance for the true trees only. 
This is probably caused by the fact that false spruces for some reasons 
happen to be located close to  true spruces but are not spruces. Therefore, 
the quadratic dependence between the forest area and the num ber o f trees 
com prised by it (if we assume uniform forest density) should be violated 
for area chosen in some way.



The area on which we will require the quadratic dependence between it 
and the num ber of spruces is constructed in the following way. For all 
pixels representing cither true or false spruces we consider circles o f the 
same radius r with centres at the pixels. We let r grow and for each value 
o f r e.g. positive integer we calculate the num ber o f  trees which fall within 
at least one circle. The function describing the dependence o f the number 
o f trees on r should be a quadratic one. We cannot go too  far with the 
radius length, because for big values of r the circles overlap one another 
and thus some trees would be counted twice. In Table 1 we calculated the 
num bers o f trees comprised by circles with radius length equal 20 pixels 
at the greatest. The particular lengths ending with 0.1 were chosen so as 
to  m ake the series of the num ber of trees as sm ooth as possible. Actually, 
no m atter w hat the ending of the successive radius values is, the conclusions 
arc exactly the same but for the ending chosen i.e. 0.1 the scries are 
w ithout big “jum ps” . Next, we calculate the coefficients o f determ ination 
for the least squares quadratic regression for the num ber o f trees comprised 
by all circles in dependence on r. The coefficients presented in Table 1 were 
calculated for the regression lines based on 10 successive values o f r. For 
the reasons m entioned above we cannot go to far with radius length and 
if we choose o ther num ber o f observations for quadratic regression e.g. 8, 
9, 11 or 12, the results are almost identical (r2 is the same up to 0.01).

Table 1. Num bers o f spruces (true and all) within successive circles and determ ination coefficient
for quadratic  regression

R adius length r
N um ber o f  trees within circle o f radius r D eterm ination  Coefficient

all trees true trees all trees true trees

4.1 5 1 0.902 0.803
5.1 9 2 0.930 0.873
6.1 10 2 0.952 0.904
7.1 16 2 0.963 0.914
8.1 24 5 0.975 0.943
9.1 34 6 0.985 0.966

10.1 50 13 0.990 0.979
11.1 69 23 0.990 0.983
12.1 92 36 0.991 0.987
13.1 109 42 0.994 0.992
14.1 140 64
15.1 169 84
16.1 197 104
17.1 234 126
18.1 261 145
19.1 297 171

Source: A u th o r’s investigation.



Looking at the num bers presented in Table 1 one can see tha t the 
coefficient o f determ ination for true trees only reach the ideal value (i.e. 
equal to one) “ later” than the coefficient for all trees. Later, obviously, 
refers to bigger values of r and, what follows, to greater num ber o f trees 
comprised by all circles. T o some extent this phenom enon m ay seem natural 
because the forest density o f true trees is smaller. In our opinion, however, 
this discrepancy is also caused by particular location o f false trees. The 
value o f determ ination coefficient for all trees which m ay be appropriate for 
the “threshold point” should be the one from interval (0.985, 0.990), preferably 
closer to 0.985, because later the differences between the values of deter
m ination coefficient bccomc very small (even less than  0.001), too  small to 
be considered informative signs of the dependence of determ ination coefficient 
on radius length. I f  we assume 0.985 to  be the threshold point we can see 
that for true trees we would have to throw away only 6 trees out o f 171, 
which is a tolerable m istake (3.5% ) and for all trees we would have to 
throw  away 34 trees, which is very close to the ideal num ber o f 35 false 
trees that should be rejected. This method o f assessing the num ber of true 
trees is no t very precise because it leaves some placc for deliberate threshold 
point choice, but it is very simple and free o f any assum ptions apart from 
uniform forest density.
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Jerzy Korzeniewski

AN A LIZA  PR O C ESÓ W  PU N K TO W Y C H  Z  S Z U M E M  
Z  PR ZY K ŁA D EM  A PLIK A C Y JN Y M

Streszczenie

Przykładem  zastosow ania  procesów  punktow ych obserw ow anych w raz z szum em  są 
zdjęcia lotnicze lasów  robione w celu oszacow ania uby tków  leśnych n a  danym  terenie. 
R udem o i L und (2000) zaproponow ali m odel, k tó ry  m oże być użyteczny w tym  celu, 
wykorzystujący liczbę „kandydatów  na drzew a” widocznych na zdjęciu. Param etry  warunkowej 
funkcji w iarygodności zostały oszacowane z uwzględnieniem  takich odm ian  szum u, jak



znikanie punktów , przemieszczanie się punktów  oraz pojaw ianie się punktów  fałszywych. To 
podejście nie rozwiązuje problem u szacowania faktycznej liczby drzew.

W artykule tym zaproponow ano nowy algorytm , który bezpośrednio szacuje faktyczną 
liczbę prawdziwych drzew. Jedynym  koniecznym  założeniem jest założenie o  stałej gęstości 
zalesienia na  danym  obszarze lasu. R ezultaty uzyskane za pom ocą now ego algorytm u m ożna 
ocenić jak o  interesujące.


