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Abstract

An example of the application of point processes observed with noise are aerial photographs
of forests with the aim of estimating the actual number of trees on a given area. Lund and
Rudemo (2000) proposed a model useful in this context, basing on the number of “trees
candidates” visible on the photograph. The parameters of conditional likelihood function were
estimated taking into account such variations of noise as points thinning, points displacement
and appearing of extra ghost points. The approach proposed does not solve the problem of
the estimation of the actual number of trees.

In this paper a new algorithm to estimate directly the number of actual trees is proposed.
The only assumption on which the new measure depends is the natural assumption about
forest density being locally constant. The results achieved with the help of the new measure
may be assessed as interesting.

Key words: point process, maximum likelihood method, noise, incomplete observation,
image data, computer algorithm.

1L INTRODUCTION

Figure 1 depicts a map of a part of a forest with 206 small circles and
171 dots. The dots were found on the basis of an aerial photograph of
this part of the forest with the help of a template constructed by Larsen
and Rudemo (1998) and they represent candidates for trees (Norway spruce).
Basically, the idea of the template construction is to choose pixels from
black-and-white photograph the ellipse neighbourhood of which gives suitably
high correlation between the shades of the grey colour of the neighbourhood
pixels and the shades of grey of the ideal template. The dots represent
pixels for which the correlation was high enough. The circles represent true
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trees found in the same region of the forest by manual inspection. One
pixel on the photograph corresponds to ground area of 0.15x0.15 m2

Figure 1. True tree tops (dots) and candidates for trees (circles)

The statistician’s task is to investigate all the phenomena influencing the
picture that wc arrive at in connection with the true number of trees that
grow on the area being photographed and, if possible, to estimate the
number of trees from the number of candidates. Lund and Rudemo (2000)
propose an approach the idea of which is to treat trees candidates as
realisations of a point proccss contaminated by noise of different kinds.
The authors found the conditional likelihood function and analysed its
behaviour to estimate some interesting parameters. This approach is briefly
outlined in the next section. However, the mentioned approach, though
mathematically elegant does not answer the question that is most interesting
to forest men and ecologists i.e. what is the approximate number of true
trees? In the third scction wc propose a new measure which tries to tackle
this problem directly.

Il. POINT PROCESSES WITH NOISE

Lund and Rudemo proposed to consider two point processes, one of
which i.e. Y is an imperfect observation of the other process X. We assume
that X and Y arc point processes on a subset A of 4&-dimensional Euclidean
spacc Rd with a finite number of points, X = {X*.ieM}, M = {1, m},
Y={Yj:jeN}, N = {1, n}. Assume further that A is bounded with



a positive d-dimensional volume \Ad\. Suppose that ¥ is generated from
the X process by the following disturbance mechanisms.

1. Thinning. Each point X,, for ieM, is thinned with probability 1- p(XJ
and retained with probability p(Xt). If an X point is thinned, then there
will be any corresponding Y point. Thinings are assumed to be independent
for different points.

2. Displacement. For each remaining point Xt a corresponding Y, point
is generated by displacement to a position with probability density k(m|X.)
with respect to Lebesgue measure on R* Given X, the displacements of
different points are independent, mutually and of the thinnings.

3. Censoring. The displaced points arc observed if they are within the
observation region A; otherwise they are censored and not observed. Thus
censoring of an unthinned point generated by Xt occurs with probability
$A'k(y\Xi)dy. Here Ac denotes the complement of the set A.

4. Superposition of ghost points. In addition to the points generated as
described above we have superposition of extra “ghost” points. These points
are assumed to arise from a Poisson process on A with intensity ( 1X.)
where X, as above, denotes the entire X-process.
The initial and basic result is the following theorem which gives formula
for the conditional probability of a point process Y given another process X.

heorem 1. Let X and Y be two finite point processes as specified
above, on a bounded set A. Suppose that g(y\X) and k(y|X;) for ieM,
are continuous functions of ye A. Then the conditional likelihood of
Y given X is

L(Y\X) = exp{\A\d-$ Ag(y\X)dy} £ z LilL2L3, 1)
M,SM neP(M,,A,)
ts

where
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and the reference measure corresponds to the Poisson process on A with
intensity 1. Looking at this formula we can see that all possible noise
“combinations” were taken into account, because the symbol P(MItNJ
denotes all possible one-to-one mappings from Mi to Nt.



The formuta given in Theorem 1 is too complicated to analyse in order
to find its maximums, therefore, we can proceed with a couple of simp-
lifications. First simplification is that of the homogenous intensity of the
ghost points i.e. g(mJ/T) = A Then the likelihood function (1) simplifies to

LYy\X)= £ I T(MItN Itn) @)
WMeAF itep(Af, jV)
INTEIRY

with the summed terms given by

T(Mj, N1tn) = p|AfANMLexp{(I —AJI/II}!I M KYnWX,)

- (.ieM,
- DRG0y 0

The second simplification refers to the fact that nearly all Xt points are
so far from the boundary of the observation region A that we can safely
assume that they are not censored i.e.

$Ack(y\Xi)dy = 0. 4)
In the first approximation of (3) we assume that (4) holds for all X-points,

and thus replace (3) by

exp{(i n kym\x A
U'eAf, J

()

For s= (MI,N1,n) note that (5) may be considered as a function of the
parameter vector

0= (6)

and let us denote that it is maximised by the following vector

0(s) = (p,1,ML,M2" x,ar,p)
where
p=\MI\AM\, X= \N\Nt\\Ad\, and (fin 'yr,av,a2,p)

are the standard maximum likelihood estimates of the parameters in a two-
dimensional normal distribution based on the sample (YnW—X;, ieM {.



Scarch for the maximum is still a problematic task and we cope with
it by considering the function value in all possible “neighbours of a considered
state”. For state we define its neighbour (M ,,”,q") if it can
be obtained from ( ) in one of the following five ways.

1. Addition of a pair of X-and Y-points: M\ — M lu{i'} where i'eM\MI,
N\ = Ntu {/}, where j'e N \ N =n(i), for ieMI and n'(i") =/. The
number of such neighbours is |[M\Af1||7V\N1].

2. Removal of a pair of X-and Y-points: M\ = AijXji'}, where i'eM ,,
N't = jVI\{/'}, where / e/VI5a'(0 = n(i), for ieM\ and n(i') =/. This can
be done in |A/(] = |[N,| ways.

3. Swapping an X-point: M\ = (M \{I})u{i"}, where i'eA™ and
i"eM\M ,, N\ = Ntn'(i) = a(0, for ieM \{r'} and n'(i") = n(il'). There are
IMJIM X AfJ such neighbours.

4. Swapping a Y-point: M\, N\ = ( N[ j "}, where j'eNI and
j"eN\NI, a'(0 = a(0, for iuM \{i"}, where n(f) =/ and a'(0 =j". Swapping
a Y-point can be done in INJ |Ar\N,| ways.

5. Exchange among two pairs: M\ = Mt,N\ —N\ = NIfa'(0 = a(0, for
ieMI\ {i',i"}, where i'eMIl and i"eMI, for i'¢gi",n'(i’) = n(i") and
n'(i") = a(I"). The number of such neighbours is IMjKM jl-1)".

Now we can search for the maximum of function (2) by considering
iteratively its value on all possible states each of which is a neighbour of
some other state of the previous iteration. In this way Lund and Rudemo
found the maximum of the conditional likelihood function and tried to
investigate the behaviour of this function. This approach, though quite
attractive from the mathematical point of view, does not solve the main
problem of estimating the extent of forest depletion on the basis of the
possessed noise version i.e. the Y process realisation.

I1l. DIRECT ASSESSMENT OF FOREST DEPLETION

Assessing intuitively the number of true trees one feels that the position
of false trees is not independent of the position of true trees (obviously it
cannot be, e.g. both cannot be located in the same positions) or, in other
words, the average distance between false tree and the nearest tree (either
false or true) is smaller than the same distance for the true trees only.
This is probably caused by the fact that false spruces for some reasons
happen to be located close to true spruces but are not spruces. Therefore,
the quadratic dependence between the forest area and the number of trees
comprised by it (if we assume uniform forest density) should be violated
for area chosen in some way.



The area on which we will require the quadratic dependence between it
and the number of spruces is constructed in the following way. For all
pixels representing cither true or false spruces we consider circles of the
same radius r with centres at the pixels. We let r grow and for each value
of r e.g. positive integer we calculate the number of trees which fall within
at least one circle. The function describing the dependence of the number
of trees on r should be a quadratic one. We cannot go too far with the
radius length, because for big values of r the circles overlap one another
and thus some trees would be counted twice. In Table 1 we calculated the
numbers of trees comprised by circles with radius length equal 20 pixels
at the greatest. The particular lengths ending with 0.1 were chosen so as
to make the series of the number of trees as smooth as possible. Actually,
no matter what the ending of the successive radius values is, the conclusions
arc exactly the same but for the ending chosen i.e. 0.1 the scries are
without big “jumps”. Next, we calculate the coefficients of determination
for the least squares quadratic regression for the number of trees comprised
by all circles in dependence on r. The coefficients presented in Table 1 were
calculated for the regression lines based on 10 successive values of r. For
the reasons mentioned above we cannot go to far with radius length and
if we choose other number of observations for quadratic regression e.g. 8,
9, 11 or 12, the results are almost identical (r2 is the same up to 0.01).

Table 1. Numbers of spruces (true and all) within successive circles and determination coefficient
for quadratic regression

Number of trees within circle of radius r Determination Coefficient
Radius length r

all trees true trees all trees true trees
4.1 1 0.902 0.803
5.1 9 2 0.930 0.873
6.1 10 2 0.952 0.904
7.1 16 2 0.963 0.914
8.1 24 5 0.975 0.943
9.1 34 6 0.985 0.966
10.1 50 13 0.990 0.979
111 69 23 0.990 0.983
121 92 36 0.991 0.987
131 109 42 0.994 0.992
14.1 140 64
151 169 84
16.1 197 104
17.1 234 126
18.1 261 145
19.1 297 171

Source: Author’s investigation.



Looking at the numbers presented in Table 1 one can see that the
coefficient of determination for true trees only reach the ideal value (i.e.
equal to one) “later” than the coefficient for all trees. Later, obviously,
refers to bigger values of r and, what follows, to greater number of trees
comprised by all circles. To some extent this phenomenon may seem natural
because the forest density of true trees is smaller. In our opinion, however,
this discrepancy is also caused by particular location of false trees. The
value of determination coefficient for all trees which may be appropriate for
the “threshold point” should be the one from interval (0.985, 0.990), preferably
closer to 0.985, because later the differences between the values of deter-
mination coefficient bccomc very small (even less than 0.001), too small to
be considered informative signs of the dependence of determination coefficient
on radius length. If we assume 0.985 to be the threshold point we can see
that for true trees we would have to throw away only 6 trees out of 171,
which is a tolerable mistake (3.5%) and for all trees we would have to
throw away 34 trees, which is very close to the ideal number of 35 false
trees that should be rejected. This method of assessing the number of true
trees is not very precise because it leaves some placc for deliberate threshold
point choice, but it is very simple and free of any assumptions apart from
uniform forest density.
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ANALIZA PROCESOW PUNKTOWYCH Z SZUMEM
Z PRZYKLADEM APLIKACYINYM

Streszczenie

Przyktadem zastosowania proceséw punktowych obserwowanych wraz z szumem sg
zdjecia lotnicze laséw robione w celu oszacowania ubytkéw lesnych na danym terenie.
Rudemo i Lund (2000) zaproponowali model, ktéry moze by¢ uzyteczny w tym celu,
wykorzystujacy liczbe ,kandydatéw na drzewa” widocznych na zdjeciu. Parametry warunkowej
funkcji wiarygodnos$ci zostaty oszacowane z uwzglednieniem takich odmian szumu, jak



znikanie punktéw, przemieszczanie sie punktéw oraz pojawianie sie punktéw falszywych. To
podejscie nie rozwigzuje problemu szacowania faktycznej liczby drzew.

W artykule tym zaproponowano nowy algorytm, ktéry bezposrednio szacuje faktyczng
liczbe prawdziwych drzew. Jedynym koniecznym zatozeniem jest zatozenie o stalej gestosci
zalesienia na danym obszarze lasu. Rezultaty uzyskane za pomoca nowego algorytmu mozna
oceni¢ jako interesujace.



