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TAIL DEPENDENCE IN BIVARIATE DISTRIBUTIONS

Abstract

In the paper the problem  o f tail dependence for bivariate d a ta  is considerod. T he review 
of different approaches is given. T he particu lar em phasis is pu t on the conditional correlation 
coefficients and tail dependence coefficients. It is shown how the latter can be analyzed 
through copula analysis.
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*— *  I. IN T R O D U C T IO N

C Q
The analysts o f the dependence (relationship) between variables is one 

o f the m ost im portant tasks in m ultivariate (particularly -  bivariate) statistical 
analysis. One usually considers either the so called jo in t relationship or the 
so callcd conditional relationship. In the first type of relationship all variables 
arc regarded as whole set, in the second type o f relationship one (or m ore) 
variable is regarded as the dependent variable and the other variables are 
considered as the independent variables.

The analysis of the relationship is usually performed through two different 
quantitative approaches:

m odeling the relationship by a function -  for example -  regression 
function;

m easuring the relationship by a num ber -  for example -  correlation 
coefficient.
Very often, however, these two approaches are strictly connected, as it is 
in the case o f regression function and correlation coefficient.
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When one assumes stochastic approach, the variables arc treated as 
random  variables, then all inform ation about the relationship (dependence) 
is contained in the cum ulative distribution function. For example, if we 
consider two variables, X  and У, then this inform ation is given as:

-  for jo in t relationship:

P ( X < x ,  Y < y ) ,

-  for conditional relationship:

Р (У < у |А г < х ) .

Of course, in the applications, the simplification is made. Instead of cumulative 
distribution function one takes into account only some param eters, usually 
mom ents of the distribution. Then we get for example:

-  for jo in t relationship:

COV(X, Y) = E (X Y )  -  E (X )E (Y ),

-  for conditional relationship:

Е (У |Х ).

Such a simplification, however, may not capture the particular properties 
of the relationship, for example the tail relationship, that is the relationship 
existing between the very large (or very small) values o f two variables. I his 
is similar problem as in univariate analysis, where the classical “m ean-based” 
analysis does not capture the extreme peculiarities.

In this paper we discuss the problem  o f tail dependence. F o r simplicity, 
we consider the case o f  bivariate distributions (two variables: X  and У).

II. MODELUNG T A IL  D E PE N D E N C E  -  D IFFER EN T A PPR O A C H E S

There are different approaches that can be used in the m odeling o f tail 
dependence. We divide them into three classes:

-  separate m odeling o f center and tails o f distribution;
-  conditional dependence measures;
-  tail dependence measures.



Separate modeling of center and tails of distribution

The first approach consists in the separation of data  set into (usually) 
two classes. The first class contains the “center” (the “core” ) o f the 
m ultivariate distribution, here the m odeling o f the relationships is done 
for the “ typical” observations. I he second class contains the tails (the 
“ outliers” ) o f the m ultivariate d istribu tion , here the m odeling o f the 
relationships is done for the extrem e values. It m ay also happen that the 
d a ta  set is separated into m ore than two classes (when m ore than one 
tail is considered). In this approach we can distinguish two groups of 
methods:

-  clustering methods;
-  m ixture models.
Clustering m ethods aim at classifying the data set into classes, in such 

a way that the observations in the same class are as similar as possible, 
and the observations in different classes are as dissimilar as possible. In 
m any methods, the clustering optim ization criterion is defined. This crite
rion depends on the goal o f  classification and the understanding of 
sim ilarity o f the observations. F o r example, in the one o f the m ost 
popular m ethods, к -means m ethod, the similarity is measured through the 
Euclidean distance between the observations. This means that for the 
purpose of the m odeling o f the relationship one has to apply the suitable 
criterion.

The second group, m ixture models, assumes stochastic approach. Here 
the m ultivariate distribution is treated as a m ixture o f distributions, where 
the respective com ponents o f the m ixture correspond to the center and tails 
o f the distribution. M ixture models are described for example by M cLachlan 
and Peel (2000).

Conditional dcpcndcncc measures

Here one considers the conditional distribution o f two variables given that 
one o f these variables takes the value from the tail. As the natural dependence 
measure the so called conditional correlation coefficient can be used. It is 
given by the following form ula (w ithout the loss of generality we consider 
the upper tail):

COV(X , y |Z > s )
Pc  = —— • ПЛ

V W * > s ) H 7 l* > s )  W



Here s denotes the large value o f the variable. Therefore this conditional 
correlation coefficient is defined given that one variable takes large (extreme) 
value. It can be proved tha t for some bivariate distributions the conditional 
correlation coefficient is related to correlation coefficient.

F o r bivariate (standard) norm al distribution we have:

Pc -  \  2 • (2)

V ' n * i * > S)

In the limiting case -  if s goes to  infinity we get:

P 1 /14
PC ( )  

Therefore the conditional correlation coefficient converges to zero regardless 
of the value o f (unconditional) correlation coefficient.

On the other hand, for bivariate t distribution with degrees of freedom 
we have in limiting case:

P c ~ * __________ j— z-------------- ‘ (4)

v V  +  ( v - 1) - p 2)

Table 1 presents the limit o f conditional correlation coefficient for bivariate 
t distribution -  different num ber degrees of freedom in columns and different 
unconditional correlation coefficient in rows.

Tabic 1. C onditional correlation coefficient 
-  lim it in the case o f bivariate í d istribution

3 4 10 20 30

-0.9 -0.79 -0.68 -0.43 -0.31 -0.25

-0 .5 -0.45 -0.35 -0.19 -0.13 -0.10

0 0 0 0 0 0

0.5 0.45 0.35 0.19 0.13 0.10

0.9 0.79 0.68 0.43 0.31 0.25



In all presented cases -  cxcept for 0 -  the conditional correlation coefficient 
is lower than (unconditional) correlation coefficient. It also gets lower when 
the num ber o f  degrees o f freedom increases -  but it is different from 0.

Sometimes the o ther concept of conditional correlation coefficient is 
used, where instead o f one variable, conditioning is on both variables. Then 
we get the following version o f conditional correlation coefficient:

COV(X, y |X > s ,  Y>s )
Q cc  — F - ----------------- - ■ .....................  ■ ■ ------- - —=  * (5 )

J V { X \ X > s t y > s ) F ( y |X > s ,  Y>s )

It can be proved that in the case of bivariate norm al distribution we get 
in the limiting case:

1 + p  1
1 — p s2P c ^ -P - ,— (6)

So also here the conditional correlation coefficient converges to zero regardless 
o f the value o f (unconditional) correlation coefficient. Also the properties of 
this version o f conditional correlation coefficient are similar to  the one in 
the previous version. M ore detailed description of conditional correlation 
coefficients is given by M alevergne and Sornette (2002).

It should be noted, tha t in both  version o f conditional correlation 
coefficient we still are limited to  linear relationship, which is the m ain 
drawback o f this approach. This draw back (as well as some others) does 
not exist in the other approach, tail dependence measures, described below.

III. TAIL DEPENDENCE MEASURES

This is the other group o f dependence measures, where one looks directly 
into tails of the bivariate distribution. There are two coefficients o f tail 
dependence, namely:

-  coefficient of lower tail dependence, given as:

Ai = l i m P ( y < G - 1( u ) |A '< F - 1(«)), (7)
u->0

-  coefficient of upper tail dependence, given as:

=  \imP(Y> G~l(u)\X > F-'iu)),
И - 1



Here F and G denote the cum ulative m arginal distribution function of 
X  and Y, respectively, and и denotes the probability.

Both tail dependence coefficients have rather clear interpretation. They 
show the probability that one variable takes extremely large value (case of 
upper tail dependence) or extremely small value (case of lower tail dependence) 
given the other variables takes extremely large value (case of upper tail 
dcpcndcncc) or extremely small value (ease o f lower tail dependence). This 
probability is taken as limiting probability and in fact one speaks about 
asym ptotic tail dependence (or independence).

As one can sec from (7) and (8) the extremely large or extremely small 
values arc taken as high o r low quantile and in the limit these quantiles 
converge to (plus or minus) infinity. In addition, it should be mentioned that: 

the tail dependence coefficient falls into interval [0;1]; 
we speak o f asym ptotic tail independence if tail dependence coefficient 

is equal to 0;
-  we speak of asym ptotic tail dependence if tail dependence coefficient is 

higher than 0.
In practice, the calculation o f tail dependence coefficient is not easy. There 
is one im portant case, when this coefficient is given through the analytical 
formula. This refers to bivariate clliptically symmetric distributions. The 
density o f clliptically symmetric distribution is given as (sec e.g. Jajuga, 1993):

f ( x )  =  c | i r ° - 5h [ (x - /* ) r I - 1C *:-/')]. (9)

Among the members o f this family are the following multivariate distributions: 
norm al distribution, and m ore general -  K otz type distribution;

-  Cauchy distribution, and m ore general t distribution and even more 
general Pearson type VII distribution;

-  Pearson type II distribution;
-  logistic distribution, etc.
The upper tail dependence coefficient for bivariate clliptically symmetric 

distributions depends on the correlation coefficient and is given as (Embrcchts, 
McNcil, Straum ann, 1999):

n/2
j  cos “tdt

i  (ж/ 2  -  aresinp) / 2  , ,
AU — „/г (Ю)

J" cosatdt
0

Here a. denotes the tail index o f the distribution (for example, in the case 
of t distribution is equal to the num ber of degrees of freedom).



From  the form ula (10) it can he proved that for the norm al distribution 
we have the asym ptotic tail independence, if the correlation coefficient is 
different from + 1  and -1 . Therefore, bivariate norm al distribution is not 
the suitable model to capture tail de; endencc. On the other hand, for 
bivariate t distribution, if the correlation coefficient is different from m inus
1, we have asym ptotic tail dependence.

Table 2 (taken from Em brcchts, M cNeil, Straum ann, 1999) presents the 
upper tail dependence coefficients for bivariate t distribution -  different 
number degrees o f freedom in columns and different unconditional correlation 
coefficient in rows.

Tabic 2. U pper tail dependence coefficient 
-  case o f b ivariate t distribution

-0 .5 0 0.5 0.9

2 0.06 0.18 0.39 0.72

4 0.01 0.08 0.25 0.63

10 0 0.01 0.08 0.46

In general situation the analytical form ulas for tail dependence coefficients 
arc not given. However, in some cases on still can arrive at the solution by 
applying the so called copula analysis. T he presentation o f this idea is given 
below.

IV. C O PU LA  AN ALYSIS AND TAIL D E PE N D EN C E

The idea o f copula analysis lies in the decomposition of the m ultivariate 
distribution into two components. The first component consists o f the marginal 
distributions. The second component -  the crucial one -  is the function linking 
these marginal distributions in m ultivariate distribution. This function reflects 
the structure of the relationship between the com ponents of the m ultivariate 
random  vector. For simplicity, we consider the bivariate case.

This idea is reflected in Sklar theorem, given through the following 
formula:

H (x t , x 2) =  C (F l( x l), F 2(x 2)), (11)

where:
II  -  the m ultivariate distribution function;
F,. -  the distribution function o f the i-th m arginal distribution;
С -  copula function.



Thus the bivariate distribution function is the function of the univariate 
(marginal) distribution functions. This function is called copula function 
and it reflects the structure o f the relationships between the univariate 
components. In the case o f bivariate continuous distribution the presentation 
given by (11) is unique.

The presentation given by (11) can be reverted. Here the copula function 
is given as bivariate distribution function defined for the quantiles o f the 
m arginal distributions. It is given as:

C (ui> u2.) =  H (F i 1(ul ), p 2 1(u2)). (12)

Am ong the particular cases arc (already discussed) bivariate norm al dist
ribution and bivariate t d istribution. When this distribution is decomposed 
according to Sklar theorem, we get the so called normal copula and t copula. 
Their analytical form is given as:

-  norm al copula:

ч Ф"г(“,) Ф”г“2) 1 (  x 2 - 2 p x y  + y 2\J. J. W T <13)

-  t copula:

í (ui) * (“2) J /  — 2 .0 X V  -4-

-L  J .  2* j r z A ' + - ^  ) ~ v ' n 4 x J y - (l4 )

So we see that in both cases, num erical procedures are needed to  calculate 
the values of copula function.
A m ong the other interesting types o f copulas, it is worth to m ention the 
so called Archimedean copulas. They are defined for strictly decreasing and 
convex function in the following way:

c (ui >«2) =  ^  +  (15)

where:
¥ :  [0; 1] —► [0; со)
V'(l) =  0.

The m ost popular case of A rchim edean copula is Gum bel copula, where:

H t ) =  -  On ( t)y . (16)



Here param eter ß  is interpreted as a m easure of dependence, taking values 
from 1 to infinity. The value equal to 1 m eans independence, and the closer 
is this value to infinity, the closer is to the strict positive dependence. 

Gum bel copula can be written in the following form:

C (ut , u2) =  exp( — (( — In U j /  +  ( — ln u2)ß) i,ß). (17)

The crucial property o f the copula function refers to the tail dependence 
coefficients. It turns out that both, upper tail and lower tail dependence 
coefficients can be expressed through the copula function, in the following 
way:

the lower tail dependence coefficient:

h  =  lim [C(u, u))/u\, (18)
и - 0

-  the upper tail dependence coefficient:

Xv =  lim [(l — 2u +  C(u, u))/(l - и ) ] .  (19)
14-1

Using (19), it can be proved tha t for the Gum bel copula we get asym ptotic 
tail dependence, if:

ß > \ .

Then the upper tail dependence coefficient is equal to:

Xa =  2 — 2 ^ .  (20)

In practice, the im portant issue is, o f  course, the identification o f suitable 
copula function for given bivariate da ta  sets -  this helps to determ ine the 
asym ptotic tail dependence coefficients.
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Z A L E Ż N O Ś Ć  W O G O N IK  DLA R O Z K Ł A D Ó W  DW UW YM IA ROW YCH

Streszczenie

W artykule rozpatrywany jest problem  zależności w ogonie dla rozkładów dwuwymiarowych. 
Przedstawiono przegląd różnych podejść d o  analizow ania tej zależności. Szczególna uwaga 
poświęcona została warunkow ym  współczynnikom  korelacji oraz współczynnikom zależności 
w ogonie. W skazano, jak  te współczynniki m ogą być analizowane za pom ocą tzw. analizy 
połączeń.


