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Abstract. Multivariate ARCH-typc specifications provide a theoretically promising frame-
work for analyses of correlation among financial instruments because they can model
time-varying conditional covariance matrices. However, general VechGARCH models are too
heavily parameterized and, thus, impractical for more than 2- or 3-dimensional vector lime
series. A simple i-BEKK(I.I) specification seems a good compromise between parsimony and
generality. Unfortunately, Bollerslev’s constant conditional correlation (CCC) model cannot be
nested within VECH or BEKK GARCH structures. Recently, Engle (2002) proposed a par-
simoniously parameterized generalization of the CCC model; this dynamic conditional cor-
relation (DCC) specification may outperform many older multivariate GARCH models. In
this paper we consider Bayesian analysis of the conditional correlation coefficient within
different bivariate GARCH models, which are compared using Bayes factors and posterior
odds. For daily growth rales of PLN/USD and PLN/DEM (6.02.1996-28.12.2001) we show
that the £-BEKK(l, 1) specification fits the bivariate series much better than DCC models,
but the posterior means of conditional correlation coefficients obtained within different models
are very highly correlated.
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1. INTRODUCTION

Appropriate statistical modeling of correlation among Financial in-
struments is crucial for any application of portfolio analysis and for
empirical research on dependencies between financial markets. Multivariate
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ARCH-type specifications provide a theoretically promising framework as
they can model time-varying conditional covariance matrices. However,
general VechGARCH models presented by Engle and Kroner (1995) and
Gourieroux (1997, Chapter 6) are too heavily parameterized. The number
of free parameters of multivariate ARCH-type models can increase very
fast as the dimension k of the vector time series grows. In the general
version of the /c-variate VechGARCH(p, q) (or VECH(/>, q)) model, this
number is a fourth order polynomial of k, making even VECH(1, 1)
impractical for k >2. Thus, within ARCH-type models, interest focuses on
restricted GARCH specifications or on factor ARCH models (e.g. Diebold
and Nerlove 1989, King, et al. 1994), Gourieroux 1997, Chapter 8).
However, factor GARCH models can be not only difficult to estimate (due
to the presence of latent variables), but also inadequate (inflexible in
modeling complicated dynamics of the conditional covariance matrix).
A simple t-BEKK(l, 1) model, based on specifications proposed by Baba
et al. (1989) and corresponding to certain non-linear restrictions in t-
VECH(1, 1) - cf. Osiewalski and Pipien (2002), seems a good compromise
between parsimony and generality. However, this BEKK(1, 1) model in-
herits some inflexibility of the VECH(1, 1) covariancc structure; namely,
Bollerslev’s (1990) constant conditional correlation (CCC) model cannot be
nested within VECH or BEKK GARCH structures. Recently, Engle (2002)
proposed a parsimoniously parameterized generalization of the CCC model;
his dynamic conditional correlation (DCC) specification may outperform
many older multivariate GARCH models. Hence, it is of great interest to
empirically check the explanatory power of DCC models.

In order to illustrate a formal Bayesian comparison of various bivariate
ARCH-type models through their Bayes factors, Osiewalski and Pipien
(2004a, b) used two exchange rates that were most important for the Polish
economy till the end of 2001, namely the zloty (PLN) values of the US
dollar and German mark. The data consisted of the official daily exchange
rates of the National Bank of Poland (NBP fixing rates), starting from
February 1, 1996. By restricting to only bivariate VAR(l) models with
GARCH(1, 1) disturbances, it was possible to estimate unparsimoniously
parameterized specifications, such as VechGARCH models. Those first
comparisons focused on older multivariate GARCH structures, proposed
prior to 2001. Thus, the class of models did not contain more recent
models proposed by Tse and Tsui (2002), van der Weide (2002) and, in
particular, the DCC models of Engle (2002).

The main result of Osiewalski and Pipien (2004a, b) is that the simple
i-BEKK(l, 1) model wins model comparison. In its /c-variate version, it has
0(k2) free parameters, much less than the /cvariate general version of
VECH(1, 1), requiring 0(/c4) free parameters. In this paper we focus on



0(k2) specifications, in particular on variants of Engle’s DCC structures.
Our aim is to compare these models, which were not considered in our
previous Bayesian works, to the winner from those studies. We show that,
for our data set, the unrestricted £-BEKK(l, 1) model describes the time-
varying conditional covariance matrix still much, much better than quite
sophisticated (and very elegant) DCC structures, specially designed to model
dynamic conditional correlation.

In Section 2 we briefly present our Bayesian statistical methodology and
the numerical tools we use. Section 3 is mainly devoted to the description
of the competing model specifications and the results of their formal
comparison using Bayes factors. In Section 4 the sequences of estimates of
the conditional correlation coefficients (representing dynamics of the relation-
ship between our two series) and standard deviations (measuring volatility
of each series) are presented and compared.

2. STATISTICAL METHODOLOGY AND NUMERICAL TOOLS

We consider several competing parametric Bayesian models for the same
observation matrix y. The i-th Bayesian model (Mf) is characterised by the
joint density function:

1) p(YAD\MLym) = p(y\MLO{,y©)pi0lQ\M~ (i=1, .., m),

where y(0) denotes initial conditions and p(y\Mt,0w,ym), p(Ow\M”" are the
sampling density function and the prior density function under Mf, respec-
tively. 0(l), the parameter vector in M,, groups parameters common to all
m models and model-specific parameters. For the purposes of inference
within M; and model comparison, we use the obvious decomposition

p(y,0u\M (yT) = p(y\M,,y 1Qap(OT\y,MbY«>p,

where p(0(i)\y,Mt,yi0)) is the posterior density function in and

P(Y\Mi,y(@) = $p(y\MhO0(),y(©Q)p(0M)dOV)
Q

is the marginal data density in the i-th Bayesian model. Competing
models are compared pair-wise through the Bayes factor Bwu =
—p(y\Mi,yi0)/p(y\Mj,yl0)), which, together with the prior odds ratio
P(M;)/P(MT7), determines the posterior odds of M, against M m



2 P(M\Y,YT) =P (W B
P(Mjly,ym) P(Mj) .J

where P(Mh and P(Mh\y,yw) are, respectively, the prior and posterior
probability of Mh (e.g. O’Hagan 1994). The crucial role of the Bayes factor
in model comparison means that computing marginal data densities under
competing models is the main numerical task. Direct evaluation of the
integral defining the marginal data density (as well as of integrals related
to posterior inferences) - through either numerical quadratures or Monte
Carlo sampling from the prior density - is not efficient (or even not feasible)
when the dimension of the parameter space is as high as in the models
considered in this paper. Thus we have to resort to other numerical tools,
based on good exploration of the parameter space through sampling from
the posterior. Here we use Metropolis-Hastings (M-H) Markov chains (e.g.
O’Hagan 1994), Gamerman (1997).

Using simple identities, we can write the marginal data density in the form

(3) p(y\Mi,yw) = UtKylA*Oyj."0)] "~P(0(MAM"y,y10)

where P(o *\M 1,y,yT) denotes the posterior cumulative distribution function.
This formula is the basis of the method by Newton and Raftery (1994),
which approximates the marginal data density by the harmonic mean of
the values p(y|M;0(@,y{)), calculated for the observed y and for o() drawn
from the posterior distribution. The N-R harmonic mean estimator is
consistent, but without finite asymptotic variance. Despite this serious
theoretical weakness, the N-R estimator (very easy to compute) was quite
stable for all our models; (rf. Osiewalski and Pipiet 2004a for more discussion
of computational aspects).

In order to sample from the posterior distribution in a model with the
parameter vector 0, we use a sequential version of the M-H algorithm,
where the proposal density gq(0\O(m~i)) for the next value of 0 given the
previous draw o(m~1>is proportional to /s(0|3,0(m~1),C), a Student t density
with 3 degrees of freedom, mean O(m~1) and a fixed covariance matrix
C (approximating the posterior covariance matrix). This Student-i density
(symmetric in 0 and is truncated by the inequality restrictions described
in Section 3, i.e.



This leads to the M-H Markov chain with the following acceptance
probability:

®) a(0 ;r-+3=min{(gy(0)aq(0))1(9y(0*-")at(0*-")), I},

where gy(.) denotes the kernel of the posterior density. Thus, given the
previous state of the chain, o(ffl_1), the current state o(") is equal to the
candidate value 0* (drawn from the truncated Student-i distribution discussed
above) with probability a 0 r oqr>= o<"-1> with probability
1 —a(0*;0'm~1). Our results, presented in next sections, are based on 500 000
states of the Markov chain, generated after 10 000 burnt-in states.

3. THE DATA AND COMPETING MODEUS

In order to compare competing bivariate ARCH-type specifications we use
the growth rates of PLN/USD and PLN/DEM. Our original data set consists
of 1485 daily observations on the exchange rates themselves, PLN/USD (xu)
and PLN/DEM (x2t). It covers the period from 1.02.1996 till 28.12.2001. The
first three observations from 1996 (February 1, 2 and 5) are used to construct
initial conditions. Thus T, the length of the modeled vector time series of daily
growth rates of x1( and x2 is equal to 1482.

We denote our modeled bivariate observations as y, = (¥YuYu)\ where
yu is the daily growth (or return) rate of the PLN value of US dollar and
y2t is the daily growth (or return) rate of the PLN value of German mark,
both expressed in percentage points and obtained from the daily exchange
rates xIt(i= 1,2) by the formula yif= 100 Hxjx”"-i). Osiewalski and
Pipien (2004a) used only a short part of this bivariate series, till the end
of 1997 (7 = 475). Now we base our results on all T = 1482 observations,
as Osiewalski and Pipien (2004b), but we do not use any exogenous variables
in the conditional mean specification. Thus we stay within the pure
VAR-GARCH framework, like Osiewalski and Pipien (2004a).

We model the data using the basic VAR(l) framework:

yt-6 = R(yi-1-8) + et

with the error described by competing bivariate GARCH specifications.
More specifically,

() hu RMi Rz Yu-i



The elements of 6 and R are common parameters, which we treat as
a priori independent of all other (mainly model-specific) parameters and
assume for them the multivariate standardized normal prior iV(o, 16),
truncated by the restriction that all eigenvalues of R lie inside the unit
circle. We assume that the conditional distribution of e, (given its past,

is Studcnt-£ with zero location vector, inverse precision matrix H,
and unknown degrees of freedom v> 2, i.e.

(8)

As regards initial conditions for //,, we take Ho = /io /2 and treat hO as
an additional parameter. We assume prior independence for v, hO (which
are common) and the remaining parameters; v follows the exponential
distribution with mean 10, Exp(10), truncated by the condition v> 2; hO
has the exponential prior with mean 1, Exp(l).

The conditional covariance matrix of e, given y/it_x is (v—2) IvHt.
Competing bivariate GARCH models are defined by imposing different
structures on Ht. That is, model-specific parameters are the ones describing
Il, in a given model. The sampling density function in each model is always
the product of T conditional bivariate Student-i densities (for y()) with
v degrees of freedom, mean ¢+ R(yt-t—<® and covariance matrix
(v—2)_1vH(.

The first specification considered here is the very parsimonious constant
conditional correlation (CCC) model of Bollerslev (1990); it imposes the
following structure on H,:

(9) /it L1 — £iio + flIHfil.t-1 """~ 1A t-1>
~22,( = a20+ a22e2,t-1 + ~22722,t-1>

A2,1 = PI2\V/MLir22,10

where pi12 is the time-invariant conditional correlation coefficient. This
simple structure of H, amounts to modeling each conditional variance by
a different GARCH(1, 1) process and making the conditional covariance
a simple function of the variances. In its /c-variate version, the CCC model
describes et using only 2+ 3lca-k(k-\)/2 free parameters; so we have
9 parameters when k= 2. For the model-specific parameters we take the
following priors:



(10) al0~Exp(1), a2o0~ Exp(l), (at1.022.M11.622) ~ t/([o, 114),
Pi2~U([-1,17),

where U(A) denotes the uniform distribution over A. Osiewalski and Pipien
(20044, b) show that, for our data, the CCC model is inadequate - it is much
worse than heavily parameterized VechGARCII specifications and than more
parsimonious BEKK structures, which all assume time-varying conditional
correlations. It seems that modeling dynamic correlation with almost as few
parameters as in the CCC model would be the most welcome solution.

The simple CCC specification (under conditional normality, i.e. with
v= + 00) has been generalized by Engle (2002) in such a way as to make
conditional correlations fully dynamic, keeping the conditional covariancc
formula basically unchanged. Engle’s dynamic conditional correlation (DCC)
models describe the diagonal elements of H, in the same way as in CCC,
but assume that

(11) AM21 = PI2,AILEA22 t>

where p 12it is the time-varying conditional correlation coefficient, modeled as

PI2,t — 12,f/> /11,1 <7220

with qiJt's being entries of a symmetric positive definite matrix Q, of the
same order as the dimension of e(. A simple specification for Qt, considered
in Engle (2002), assumes that

(12) Q= (i-*-No +akl-let-1 +fiQt- |

where a and R are nonnegative scalar parameters (a+ B < 1), et is the
vector of standardized errors and S is their unconditional correlation matrix.
In the case of our bivariate conditionally Student-r specification, we keep
Engle’s basic structure and define S as a square matrix with ones on the
diagonal and si2 = s21 = p12, an unknown parameter from the interval (-1,
1); this assures positive definiteness of S and Q,. Also, in our case

0 3) 6, = Eid(v- 2)(vhill)  (i= 1, 2).

Thus, our second specification (called DCCO0) generalizes the conditionally
normal basic structure proposed by Engle (2002) to the Student-i conditional
error distribution. The initial condition for Q, is Q0 = gq012, where g0 is
a free parameter. In its /c-variate version, DCCO describes e, using



5+ 3lc+ k(k —I)/2 free parameters - only three (q0, a& and R) more than
the CCC model (irrespective of k). Of course, CCC corresponds to a = 8 = 0,
so it is nested in DCCO. We follow the exact Bayesian approach, which
is fully feasible in the bivariate case. Thus we do not use the approximate
two-step estimation procedure suggested by Engle (2002). The three new
parameters are assumed independent a priori of the remaining ones. The
prior for q0 is Exp(1), while the one for (a, B) is uniform over the unit
simplex.

The third model (called DCC1) is also of the DCC form, but the
specification of Q, is different. The previous period error terms arc not
standardized and there are less restrictions:

(14) Q, = V-l-ae,-iR -1 +RQt~i,

V consists of Vn~ Exp(l),v22 ~ Exp(l) and viz = v21 = Pi2Vvn v22
pl2~ L/(]—,1]), so V is positive definite with prior probability 1, and
(a, B) ~ 1/([o, 112).

The fourth model (DCC2) generalizes the structure of Q, by replacing
the two scalar parameters (a and ) by two symmetric, nonnegativc definite
matrices (A and B):

(15) Q =7+A° et-xV-i+ Bo Qt_b

where C° D is the Hadamard product of two matrices of the same size
(i.e., the element-by-element multiplication). This equation resembles (24)
in Engle (2002), but (as in DCC1) the previous period error terms are not
standardized and there are no restrictions on A + B. Our Bayesian DCC2
specification uses the same V as in DCC1 and assumes that A consists of:

ai2 = az2i = ®\Van az22» «11.«22~ ugo, 1]) and ar~ £/([—, 1]); similarly for
Bij in B: R12=R2l =RjBRnRzz, AiAa ~ M) and Br~ U([-1,1]). So Q,
is positive definite with prior probability 1. In its /c-variate version DCC2
has s + 3{2k + k(k —1)/2} free parameters that enter the conditional dist-
ribution of e, (18 for k = 2).

As we have already noted, the i-CCC specification was strongly rejected
by our data when compared to VECH and BEKK bivariate r-GARCH
structures. Now we show the results of our Bayesian comparison between
the t-CCC and each f-DCC model. The decimal logarithm of the Bayes
factor in favor of the DCCO model is 46.60, in favor of the DCC1
specification is 45.15, while for the DCC2 structure we obtain 46.65. All
three DCC models are about 45 orders of magnitude better (i.e., more
probable a posteriori under equal prior model probabilities) than the CCC



model ! High and almost equal values of the Bayes factors for DCCO and
DCC2 indicate that these two models describe the data equally well. The
pricc wc pay for not using standardized residuals in Q, amounts to estimating
more parameters in DCC2 than in DCCO. The parameterization in DCC1
seems not rich enough, but the difference between the Bayes factors (of
this model against CCC and of DCCO against CCC) is not large when we
take into consideration sensitivity with respect to the prior distribution and
numerical stability issues.

The results obtained for the DCC models seem encouraging. However,
our previous results (cf. Osiewalski and Pipienn 2004b) show that that the
decimal log of the Bayes factor for a simple t-BEKK(I, 1) model (against
CCC) is even much higher, equal to 64.13. This BEKK specification is
defined by the following structure of Ht:

(16)

A .-TF - "™11+TF** <, T<«,-n-1)C1" M + p ¢, 2T » .-,p“ ¢
[al2 a22\ L"21 223 L"21 “22) \C2l C22J LC2l c2

ie. Ht= A 4 +C'Al,_1C.

The parameters of this structure have the following prior distributions:

an ~Exp(1), a2~ Exp(\), ai2~N(0,1), bn ~N (0.5,1),
bn (0,1), b21~11(0,1), b22~N (0.5,1), cu ~JV(0.5,1),
c12~N (0,1), c21~N(0,1), c22~N(0.5,1),

which are truncated by the restrictions of positive semi-definiteness of the
symmetric (2 x 2) matrix A and stability of the general (2 x 2) matrix C (all
eigenvalues of C lie inside the unit circle). Also, the conditions: buy> 0
and cun >0 are imposed in order to guarantee identifiability, since B and
-B as well as C and -C lead to the same Ht, and thus are observationally
equivalent. In the /c-variate version, our r-BEKK(1, 1) model describes the
conditional distribution of e, (given its past) using 2 + k(k+ lyr2 + 2k 2 free
parameters (13 for k = 2).

The success of the i-BEKJC(l, 1) model (its clear superiority over the
DCC models and other specifications in explaining the time-varying con-
ditional covariance structure) suggests further search for more parsimonious
special cases of i-BEKJC(I,I) that would hopefully keep its explanatory
power. Some models, like i-BEKK(I,0) that assumes C = 0, have already
been tried (cf. Osiewalski and Pipien 2004b). The decimal log of the Bayes
factor of i-BEKK(I,0) relative to t-CCC is -23.71 (). Thus, the BEKJC(Z, 0)



model (with an ARCH(l) structure only) is even much worse the than the
CCC specification, so it will not be discussed further. Here we propose
a simple “scalar i-BEKK(l, 1)” structure, which amounts to assuming R = hl2
and C = cl2, where h and ¢ arc independent scalar parameters with N(0.5, 1)
prior distributions, truncated by the restrictions: b> 0 and 0<c<I. So we
consider

(17) I, = A+ +cof, b

which is much simpler than DCC1 (it uses the DCC1 structure of Qt at
the level of Ht). The dccimal log of the Bayes factor of this scalar
t-BEKK(I,I) relative to t-CCC is 48.75, indicating that this restricted,
extremely simple BEKK formulation can compete in dynamic correlation
modeling with more sophisticated DCC structures, designed for this purpose.
In fact, our scalar BEKK is about two or three orders of magnitude more
probable a posteriori than DCCO or DCC2 (assuming equal prior model
probabilities). Of course, the unrestricted BEKK specification undoubtedly
wins our model comparison for the analyzed data set, being about 15
orders of magnitude better than the second best specification.

All our results, those presented previously in Osiewalski and Pipien
(2004b) and the new ones given here, indicate that the growth rates of
PLN/USD and PLN/DEM strongly reject the constant conditional correlation
hypothesis. These exchange rates form a bivariate time series with strong
correlation dynamics, where BEKK models can (and should) be used. The
fact that BEKK models do not nest the CCC case is not a problem for
the Bayesian approach, which can deal with testing non-nested specifications
using Bayes factors and posterior model probabilities. The results of this
section are summarised in Table 1, where we rank the models by the
increasing value of the decimal logarithm of the Bayes factor of BEKK(1,1)
against the alternative models.

Table 1. Logs of Bayes factors in favor of i-BEKK(Il, 1) and average posterior means of pi2t

Model Number of Rank 108103 1) Average
parameters ' E(PLL\Y)
M,, BEKK(1,1) 19 1 0 0.162
M2, scalar BEK.K(1,1) 13 2 15.38 0.122
M3, DCC2 24 3-4 17.48 0.132
M4, DCCO 18 3-4 17.53 0.132
Ms, DCCI 20 5 18.99 0.132

M6, CCC 15 6 64.13 0.237



4. POSTERIOR INFERENCE ON CONDITIONAL CORRELATION COEFFICIENTS
AND VOLATILITIES

In this section we compare main results for individual volatilities and
the dynamic correlation structure, obtained within each model. It is important
to know whether models that have different explanatory power describe
this structure in a similar way.

The plots of the sampling conditional correlation coefficients p12i, (for
each (=1, T; T = 1482) are presented in Figure 1, where we draw two
lines: the upper one representing the posterior mean plus two posterior
standard deviations and the lower one - the posterior mean minus two
posterior standard deviations. We focus on typical patterns, so only two
models arc represented in Figure 1. It is clear that constancy of conditional
correlations, which are quite tightly concentrated around their abruptly
changing posterior means, is not supported by the data. This explains why
the CCC model receives negligible posterior probability when compared to
DCC or BEKK specifications. The last column of Table 1 presents time
averages for the sequences of posterior means of the conditional correlation
coefficient in each model, while Table 2 gives the empirical correlation
coefficients between these sequences (the numbers above the diagonal).

Table 2. Correlation coefficients between the posterior means of the conditional correlations
(upper part) and covariances (lower part)

Specification BEKK Scalar BEKK DCC2 DCCO DCC1
BEKK X 0.9113 0.9180 0.9094 0.9125
Scalar BEKK 0.9152 X 0.9837 0.9810 0.9826
DCC2 0.9299 0.9987 X 0.9767 0.9959
DCCO 0.9172 0.9982 0.9982 X 0.9643
DCC1 0.9192 0.9996 0.9993 0.9983 X

These results show that the models of comparable explanatory power lead
to almost the same inference on the dynamics of conditional correlation.
For the scalar BEKK and all three DCC models, averages of E(piztly)
E=1, .. T) are about 0.12-0.13 and the empirical correlation coefficients
between pairs of E(piztlly) sequences are bigger than 0.96. However, the
sequence of E(p12,|>) coming from the unrestricted BEKK is slightly less
correlated with the others (about 0.91) and has a somewhat higher average
(0.16). Also, the plot obtained for the unrestricted BEKK looks somewhat
different (cf. Figure 1).



Unrestricted BEKK(1, 1)

DCCO

Fig. 1 Conditional correlations (posterior mean +2 standard deviations)

Very similar results (as for the conditional correlation p12t) have been
obtained for the sequences of the posterior means of the conditional covariance
hl2y, empirical correlations are given in Table 2 (the numbers below the
diagonal).

Individual time-varying volatility of each time series is measured by the
conditional standard deviation s/(v —2)-1 (i= 1,2). The sequences oi
1482 point estimates, obtained by inserting the posterior means of the
model parameters, are plotted in Figure 2 for two models. These estimates
exhibit the same dynamic pattern for all models of the same explanatory
power (scalar BEKK, DCC2, DCCO, DCC1l) - the empirical correlation
coefficients (Table 3) are basically equal to 1 The results obtained in CCC
and all DCC arc also highly correlated. The empirical correlation coefficients
are somewhat lower (especially for PLN/DEM) when we compare the
unrestricted BEKK specification to the remaining models. Thus the best
model leads to slightly different inference on volatility. As regards time
averages of the sequences of estimated in-sample volatilities, they are almost
the same in all models (including CCC).

Our conclusion is that inferences from the best fitting model can be
approximated by the scalar BEKK or DCC specifications. Since the scalar
BEKK model is the simplest, but it does not nest the CCC case, one
should estimate and compare these two non-nested models. This seems
a feasible strategy even for /c-variate time series with k>2.



Conditional standard deviations for PLN/USD Conditional standard deviations for PLN/DEM
unrestricted BEKK(1,1) unrestricted BEKK(1,1)

DCCO DCCO

Fig. 2. Point estimates of the conditional standard deviations in two main models
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Table 3. Correlation coefficients between the estimates of the conditional standard deviations
for PLN/USD (upper part) and for PLN/DEM (lower part)

Specification BEKK Scalar BEKK DCC2 DCCO DCC1 CCC
BEKK X 0.9217 0.9234 0.9219 0.9233 0.9420
Scalar BEKK 0.8826 X 0.99988 0.99997 0.99988 0.9930
DCC2 0.8854 0.99988 X 0.99990 0.99999 0.9941
DCCO 0.8826 0.99992 0.99989 X 0.99988 0.9933
DCC1 0.8860 0.99986 0.99999 0.99986 X 0.9940
CCC 0.8828 0.99966 0.99973 0.99974 0.99967 X
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BAYESOWSKA ANALIZA DYNAMICZNEJ KORELACJI WARUNKOWEJ
Z WYKORZYSTANIEM DWUWYMIAROWYCH MODELI GARCH

(Streszczenie)

Wielowymiarowe specyfikacje tyyou ARCH stanowig teoretycznie obiecujgce ramy dla analiz
skorelowania instrumentéw finansowych, poniewaz umozliwiajg modelowanie zmiennych w czasie
macierzy warunkowych kowariancji. Jednak ogdlne modele VechGARCH majg zbyt wiele
parametrow, sa wiec niepraktyczne w przypadku wiecej niz 2- lub 3-wymiarowych wektorowych
szeregéw czasowych. Prosta specyfikacja /-BEKK(1,1) wydaje sie dobrym kompromisem pomiedzy
oszczednoscig parametryzacji i ogdlnoscig modelu. Niestety model statych korelacji warunkowych
(CCC) Boilersleva nie jest szczegélnym przypadkiem struktur VECH czy BEKK. Ostatnio
Englc (2002) zaproponowat oszczednie sparametryzowane uogélnienie modelu CCC; ta specyfikacja
o dynamicznej korelacji warunkowej (DCC) moze zdominowaé wiele starszych wielowymiarowych
modeli GARCH. W artykule rozwazamy bayesowska analize warunkowego wspotczynnika
korelacji w ramach réznych dwuwymiarowych modeli GARCH, ktére sg poréwnywane przy
uzyciu czynnikdw Bayesa i ilorazéw szans a posteriori. Dla dziennych stop zmian kurséw
PLN/USD i PLN/DEM (6.02.1996 - 28.12.2001) wykazuje sie, ze specyfikacja t-BEKK(I.I)
opisuje dwuwymiarowy szereg czasowy znacznie lepiej niz modele DCC. Jednak wartosci
oczekiwane a posteriori warunkowych wspotczynnikéw korelacji, uzyskane w ramach réznych
modeli, sg bardzo silnie skorelowane.



