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Abstract. In AR(1)-GARCH(1, 1) framework for daily returns, proposed and adopted by 
Bauwens and Lubrano (1997), Bauwens et al. (1999), Osiewalski and Pipień (2003), we 
considered two types of conditional distribution. In the first model (M ,) we assumed 
conditionally skewed-i distribution (defined by Fernandez and Steel 1998) while the second 
GARCH specification ( M2) is based on the conditional stable distribution. We present 
Bayesian updating technique in order to check sensitivity of the posterior probabilities of 
considered specifications with respect to new observations included into dataset. We also 
study differences between Bayesian inference about tails and asymmetry o f the conditional 
distribution of daily returns and between one-day predictive densities of growth rates 
obtained from both models. The results of dynamic Bayesian estimation, prediction and 
comparison of explanatory power of models M, and M 2 are based on very volatile daily 
growth rates o f the WIBOR one-month interest rates and daily returns on the PLN/USD  
exchange rate.
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1. INTRODUCTION

C om m only used tool in forecasting the volatility o f the financial time 
series, namely G A R C H  processes, were initially defined as a white noise 
stochastic processes with conditionally heteroscedastic norm al distribution. 
After Bollerslev’s (1986) definition o f G A R C H  scheme, m ore leptokurtotic 
conditional d istributions (than those o f norm al) have been also proposed
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and applied. F or example, Bollerslev (1987) presented estim ation o f the 
conditionally Student-t G A R C H  (with unknown degrees o f freedom param e
ter). Nelson (1991) considered G A R C H -type process with generalised error 
distribution (GED). Rachev and M ittnik (2002) present results o f  modeling the 
volatility o f the daily returns using G A R C H  processes with conditional 
W eibull, D ouble Weibull, m ixture of norm als and Laplace distributions.

G A R C H  processes with conditional stable distributions have been also 
considered (e.g. M cCulloch 1985, Liu and Brorsen 1995, Panorska et al. 
1995, M ittnik et al. 2002 and Rachev and M ittnik 2002). The main advantage 
o f stable G A R C H  processes is the fact that conditional norm ality  can be 
tested in this framework. Additionally, stable distributions are able in general 
to cap tu re  heavy tailedness and possible skewness o f  the conditional 
distribution o f returns.

Fernandez and Steel (1998) proposed a generalization o f Student-г distribu
tion, namely the skewed Student-t distribution, which allowed in a very simple 
way for heavy tails as well as for possible distributional asymmetry. Osiewalski 
and Pipień (2003) presented Bayesian estim ation and forecasting in G A RCH  
m odels with conditional Skewed-£ distribution. The m ain purpose o f Pipień 
(2004) was Bayesian comparison of AR(1)-GARCH(1, 1) models with skewed-ŕ 
and stable conditional distributions. Pipień (2004) presented posterior probabili
ties o f models, posterior distributions o f com m on and model specific param e
ters as well as discussed differences between predictive distributions generated 
from both specifications. These empirical results were based on three time 
series, namely daily returns o f the PLN /U SD  exchange rate, daily returns on 
the W arsaw Stock Exchange index (W IG) and daily grow th rates o f the 
W IBOR one m onth  zloty interest rate.

T he m ain goal o f  this paper is to apply Bayesian updating technique in 
order to check sensitivity of the posterior probabilities o f skewed-£ and 
stable G A R C H  models, with respect to new observations included into 
dataset. The results o f dynam ic Bayesian com parison of explanatory power 
of conditionally skewed-г G A R C H (1, 1) model (M x) and conditionally stable 
G A R C H (1, 1) m odel (M 2) are based on daily growth rates o f the W IBOR 
one-m onth interest rates (dataset A) and daily returns on the PLN /U SD  
exchange rate (dataset B). In  both cases (A and B) starting from  time series 
consisting o f 1 0 0  observations, every time when we updated daily observation 
into dataset, we recalculated posterior distribution of param eters and posterior 
probabilities of models M x and M 2. We also study differences between 
Bayesian inference about tails and asymmetry o f the conditional distribution 
o f daily returns obtained from both models. As a result o f application of 
dynam ic Bayesian inference, we present highest posterior density intervals 
o f tail and asym m etry param eters for model M  l and M 2 and one-step 
predictive densities of daily growth rates.



2. SKEWED STUDENT-T AND STABLE DISTRIBUTION

Follow ing the definition in Fernandez and Steel (1998) let denote by 
z a random  variable with skewed-t distribution with v >  0  degrees of freedom, 
m odal param eter ц,  inverse precision hO and asym m etry param eter h >  0 
у > 0 (z ~  Skt((v, n , h ,y ) .  The density function o f the distribution o f z is 
given by the form ula:

where / , ( x  | v, ц, h) denotes the value of the density function o f the S tudent-г 
d istribution with v >  0  degrees o f  freedom, m odal param eter /i and inverse 
precision h >  0 , calculated at point x:

T he shape param eter v > 0  controls tail behavior, m ode ц  and inverse 
precision h are the location and dispersion measures. Param eter у cap
tures possible asymmetry. In general y2 is the ratio  o f the probability 
masses on the right and on the left side of the m ode of the distribution 
o f z. Hence, if у =  1, then z follows symmetric Student-ŕ distribution. 
U nder symmetry (y =  1) it is also clear, that, for v >  1, E(z)  exists and is 
equal to  ц.

The class o f stable distributions is defined as a param etric family of 
continuous random  variables closed with respect to the operation o f summing. 
Hence, for any finite subset {wt , ..., w„} o f stable random  variables, the 
linear com bination w =  +  ... +  anwn has also stable distribution (a l 5  ..., a„ 
are real num bers). Analytic expression for the characteristic function of 
stable random  variable is given as follows:

I ((v +  D/2)) 

r(v/2)s/nvh
[1 +(/i  v r 1. ( x - p ) T (v+1)/2

(2) cp{t) -  exp 1 co(|i|, a)
]}•

tan(na.jl) if a Ф 1



(e.g., Zolotarev 1961). In (2) the shape param eter ae (0 ,2 ] called index of 
stability or characteristic exponent) defines the “ fatness o f tails” o f density 
function (large a implies thin tails), ц  and h are the location and scale 
param eters, ß e [ - l ,  1 ] is the skewnes param eter (the sym m etric stable 
d istribution corresponds to  ß  =  0). F or a e [ l ,  2] and ß  =  0 the location ц  is 
also equal to  the expected value o f random  variable w. We denote by 
w ~  Sta(<x, n ,h ,ß) ,  that w is stably distributed with index o f stability a, 
location param eter \x, scale h and skewness ß. There are three cases, where 
the closed form expressions for the density o f the stable random  variable 
is known. A norm al distribution is the case with a =  2, a Cauchy distribution 
is the case with a =  1 and ß  — 0, a Levy distribution corresponds to the 
case with a =  0.5 and a. =  1.

Practical application o f stable random  variables in econom etric modeling 
requires deriving density function o f random  variable w. It can obtained 
as the integral o f (2 ):

Ci) 1 +„°° ,
f s . a(w\ci ,n,h,ß) =  = -  Í e‘w‘<p(t)dt,

— 00

and have to be approxim ated by numerical integration (e.g. M ittnik et al. 
1999, Rachev and M ittnik 2002).

3. COMPETING GARCH SPECIFICATIONS

Let denote by Xj the value o f a currency (stock m arket index, interest 
rate, exchange rate) a t time j.  Following Bauwens and L ubrano  (1997), 
Bauwens et al. (1999), Osiewalski and Pipień (2003) let assum e an AR(2) 
process for \nXj  with asymmetric GA RCH (1, 1) error. In terms o f logarithmic 
growth rates y} =  1 0 0  In (xj/x j-  !) our basic model fram ework is defined by 
the following equation:

(4) y j - ô  = p - i y j - i - ö  + ö ^ n x j - i + E j ,  j =  1 , 2 , . . .

In the first model, M ls we assume for the error term Ej in (4), that 
Ej = Zj(hj)o s , where Zj are independent, skewed S tudent-t random  variables, 
with v >  0  degrees of freedom parameter, mode e (  — o c , +  oo), unit precision 
and asymmetry param eter y > 0 ; i.e. Z j~  i iSkt(v,Ci,Ly)-  Defining hj we follow 
G losten et al. (1993) asymmetric G A R C H (1, 1) specification:

(5) hj = a0 + a t Ej- J(Ej_ y < 0) +  a t е]-,1(е}_ i >  0) +  b^hj- ь  у =  1 ,2 ,



which allows to  m odel asym m etric reaction o f  conditional dispersion 
m easure hj to  positive and negative sign o f shock e j - i .  T he original 
G A R C H (1, 1) form ulation proposed by Bollerslev (1986) can be obtained 
from (5) by im posing restriction a j a f  =  1. In  (7) we also trea t h0 as an 
additional param eter. M odel M , assumes, that the conditional d istribu
tion (given the past o f the process, y/ j - i ,  and the param eters) o f the 
error term e; is the skewcd-i distribution with v >  0  degrees o f freedom 
param eter, m ode ^  e (  — oo, +  oo), inverse precision h} and asym m etry 
param eter у > 0 :

e j l V j - u M i *  Skt (v ,£ i ,hj ,y) .  j =  1, 2, ...

In model M 2, Ej =  w^hj)0 5, where Wj are independent stable random  variables 
with a e ( 0 ,2 ], location param eter i 2 e  — ° o ,+  со), un it scale and skewness 
param eter ß e [ - \ ,  1 ]; i.e. Wj~iiSta(oi,C2, 1,/D- Just like in m odel M j we 
assume for hj asym m etric G A R C H (1, 1) process, (5). In specification M 2 

Ej has conditional (with respect to ц/ j - 1 and the parameters) Stable distribution 
with a e ( 0 , 2 ], location C2 e (  — oo, +  oo), scale param eter h° 5 and skewness 
№ 1 , 1 ]:

Ejlij/j-u M 2 ~  Sta(a,C2, h j ' 5,ß),  j =  1, 2, ...

Let denote by 0 = ( ô , p ,ô 1, a 0, a l , a { , b í , h 0) the vector o f all common 
param eters for both, M t and M 2, models. We denote by r\x = (C i,v ,y )  the 
vector o f m odel specific param eters in M x; r/2 = (C2,ct,ß) groups additional 
param eters for M 2. In model M , the conditional d istribution o f is the 
skewed-i d istribu tion  with v >  0  degrees o f freedom  param eter, m ode 
/Ąl) =  ô +  р(у}-  j — S) -(- ln x  j -  i + Cih°'5, inverse precision hj and asymmetry 
param eter y > 0 :

^  P ( y j \ ' V j - i M l ,0,Til ) = f SkAy]\n'}í),h],y),  j =  1 , 2 , . . .

In specification M 2 yj  has conditional stable distribution with a e  (0,2], 
location pfjZ) =  ö +  p{yy . 1 - S )  + S l lnx7_! +  C2hj S, scale param eter (hj)0 5 and 
skewness ß e [ - \ , \ \ .

(7) Viyj W]-uM2,0,ri2) = f s ta{y)\u.,tf\hOj i ,ß), 7 =  1, 2, ...

In both  m odels the conditional distribution o f yt is heteroscedastic, where 
time varying dispersion measure hj follows asymmetric G A R C H (1 ,1) equation
(5). T he degrees o f freedom param eter, v >  0 and the characteristic exponent 
a e (0 ,2 ]  enable also fat tails o f p(yj \ii/j-l , M i, 0, ^ ;) (i =  1,2). The possible



asym m etry o f conditional distribution o f y} can be modelled in M t by 
param eter у > 0  or -  in m odel M 2 -  by ß e [ - \ ,  1]. Hence, both sampling 
m odels are able to  capture two generally appeared features of financial 
tim e series, i.e. heavy tails and asym m etry o f the conditional distribution. 
F o r a discussion of potential differences in explanatory power of models 
JV/j and M 2 caused by definitions of stable and skewed-i families sec 
Fernandez and Steel (1998) and Pipień (2004).

4. COMPETING BAYESIAN MODELS 
AND DYNAMIC UPDATING

We denote by y(i) =  (y lt ..., y t) the vector o f observed up to day t (used 
in estim ation in day i) daily growth rates and by y ' f — i y t n ,  y t+k) the 
vector o f forecasted observables at time t. The following density represents 
the i-th sam pling m odel (i =  1 , 2 ) a t time t :

(8) P ( y m , 0, r /d  =  П р ( > -М - ь М „  0, r/i),
]= i

i =  1 ,2 ,  t =  T, T +  1, T + T '

In specification M , the sampling model is based on the product o f the 
appropriate  skewed-i densities calculated at d a ta  point, namely on (6 ), 
while in m odel M 2 the density (8 ) is based on the product of stable 
densities (7). Constructed at time t Bayesian m odel M ;, i.e. the joint 
d istribu tion  o f the observables ( / ' \  y'p) and the vector o f param eters

(9) p(yw, y f ,  0, VjlM;) =  piyw, y f \ 0 ,  tit, M )  p(0, >/i|Mi),

i =  1, 2, t = T,  T +  1, ..., T + T '

requires form ulation o f the prior distribution p(0, 7 , |М (), which is invariant 
with respect to  t. In  both models we assume prior independence between 
vectors o f com m on and m odel specific param eters. In  each m odel we also 
assum e the sam e proper prior structure for 0:

p(0, >/; IM,) =  p(0) ■ pir/i I M ;) i = l ,  2 .

O ur prior inform ation about the com m on param eters is reflected by the 
following density p(0):



( 1 0 ) p(0) = p(ô)p(p)p(ôl )p(a0)p(a J p i a t  )p(bx )p(h0) ,

discussed in details in Osiewalski and Pipień (2003). In model we assume: 

pO íJM j) =p(C l ,v ,y )  =  p(Ci)p(v)p(y),

where p(Ct) is standard norm al, p(v) is exponential with m ean 1 0  and p(y) 
is log standard normal. The prior distribution of the model specific parameters 
in G A R C H (1 ,1 ) model, with stable conditional density, (M 2) is defined as 
follows:

Р(Чг \M z) =  Ж г .  a>P) =  P(C2)p(ot)p(ß),
where p(C2) is standard norm al, p(a) is uniform over interval (0 , 2 ] and p(ß) 
is uniform  over [ - 1 , 1].

The prior structure for com m on param eters as well as m odel specific 
prior assum ptions for M , was presented in Osiewalski and Pipień (2003). 
Ilcrc  we om it restrictions v > 2  and y e (ex p (-2 ), exp(2 )), imposed previously 
to  guarantee existence of the second m om ent of p(yJ\ y / j - i , M 1,0 ,r] l ). The 
prior distribution in model M 2 was discussed in details in Pipień (2004).

5. EMPIRICAL RESULTS

In  this part we present an empirical example o f dynam ic Bayesian 
com parison o f My  and M 2. We considered T  +  T  +  1 =  1398 observations 
o f daily growth rates, yr  o f the W IBOR one m onth zloty interest rate 
from 20.03.1997 till 5.09.2002 (dataset A) and T  +  T  +  1 =  1657 observations 
of daily returns on the PLN /U SD  exchange rates from 5.02.1996 till 4.09.2002 
(dataset B). S tarting at t = T  =  100 (which relates to  7.08.1997 for dataset 
A and to 25.06.1996 for dataset B) we calculated posterior probabilities of 
models M L and M 2, and posterior distribution o f param eters based on 
dataset yw, for each t =  100 up to t =  T  +  T  +  1. As a result o f  daily 
updating observations into y(i) we obtained 1299 (for dataset A) and 1558 
(for dataset B) posterior probabilities o f models and posterior distributions 
o f unknow n param eters. The m ain purpose o f the following presentation 
is to  check sensitivity o f  the posterior probabilities (as well as o f  Bayesian 
inference about skewness and tails o f conditional distribution o f returns) 
with respect to new observations dynamically included into dataset y(,). We 
also study differences in the predictive distributions o f fu ture growth rates 
obtained from  both  models.
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Fig. 1. Modeled time series with descriptive statistics

Figure 1 presents our both time series A and B. In Figures 1A and IB 
on the left axis we plotted the vales o f daily growth rates o f  the W IBOR 
one-m onth zloty interest rates and daily returns on the PL N /U SD  exchange 
rate (black line). In case o f dataset A (Figure 1A) huge outliers in the plot 
o f yj, caused by changes in the m onetary policy, together with the regions 
o f alm ost no variability, depicts very anom alous behavior o f daily changes 
o f the Polish zloty m iddle term interest rate. Tim e series o f daily growth 
rates o f PLN /U SD  exchange rate is characterized by the presence of sparsely 
occured outliers with short-lived outbreaks o f volatility. On the right axis



in Figure 1A and IB we plotted values o f the sam ple kurtosis o f y (,\  
£ =  100, ..., T  +  T  (grey line). In case of dataset A the fatness o f tails of 
the empirical distribution o f y (,) dram atically change with respect to  £. In 
both cases we observe considerable variability o f sam ple kurtosis, which
-  for dataset A -  reaches values even greater than 130 and not less than 
18. The vertical dotted lines in Figures 1A and IB locates í = 1 0 0 . It 
constitutes the shortest dataset used here in Bayesian inference in M { and 
M 2. Starting at this point, we recalculated posterior characteristics o f models 
M v and M 2 every time the single observation o f daily grow th rates was 
included into y(I).

Figure 2 presents posterior probabilities P (M ,|y (,)) (black line) and 
P ( M 2\y{,)) (grey line) obtained by assigning equal prior m odel probabilities 
( P ( M t) =  P ( M 2) =  0.5). In the first column o f the first row o f  Figure 2 we 
present the results for dataset A, while the plot in the second colum n o f the 
first row relates to  the dataset B. The bottom  plots o f  daily growth rates y} 
(j =  100 to 1398) m ay help in visual assessment o f the influence o f new data 
included into yu) on changes of the posterior probabilities. In case o f datset A, 
the first 500 observations yield decisive support for G A R C H  m odel with 
skewed-£ conditional distribution. Almost zero posterior probability P ( M 2\yif)) 
m akes stable G A R C H  completely im probable in the view o f the da ta  y(,), for 
£ =  100 till abou t 560. F o r dataset A we also observe dram atic fall of the 
posterior probability P ( M 1\ylt)) for £ greater than 600. It seems to  be caused 
by the region o f alm ost no variability o f W IBOR one-m onth interest rate, 
which lies roughly between £ =  500 and 650. Inclusion those observations into 
dataset m akes y(t) (for £ =650, ..., 700) look like an almost non volatile series 
with huge negative outliers. Ever since, the d ata  clearly support G A R C H  
model with stable conditional distribution. We observe that, for £>  1100, the 
posterior probability o f model M x again starts to  lift, making this specification 
m ore likely a posteriori. Regular fluctuations o f  y} for j  =  1100, ..., 1398 
supported G A R C H  m odel with skewed-£ conditional distribution.

F o r dataset В we observe successive grow th o f the strength o f the data 
support in favor o f m odel M v  Starting from t =  100 observations, for 
£ =  100, ..., 250, skewed-£ G A R C H  model quickly receives the m ajority of 
the posterior probability. For £ >  250 some occasional outliers -  and especially 
structu ra l break a t £ =  385 -  tem porarily  reduce posterio r probability  
P i M j y 0), m aking specification M 2 m ore probable in view of the data. 
A fter including £ > 1100  observations the posterior probabilities o f both 
specifications become insensitive with respect to new observations included 
into dataset. F or £>  1100 the dataset В decisively reject stable G A RCH  model.

In Figure 3 we present plots reflecting dynam ic changes in location and 
dispersion o f the m arginal posterior distributions o f  tail and asymmetry 
param eters o f the conditional distribution o f yj in models M L and M 2.
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F o r each dataset y(I) (for A t =  100, ..., 1398, and for B i =  100, 
1657) we calculated 95%  highest posterior density (I IPD ) intervals for tail 
param eters a (M 2) and v (A /,) and for asymmetry param eters ß  (M 2) and 
у (M j). Presented H PD  intervals can be interpreted as the Bayesian 95% 
credible intervals for estimated param eters.

The H PD  intervals, plotted on Figures 3.1 and 3.3 indicate fundam ental 
differences in inference about the tails o f the conditional distribution o f y} in 
case o f  dataset A. Based on time series y(1) both models, for t =  100, ..., 650, 
support different type of conditional distribution of return rates. Given model 
M j, for t =  100, ..., 650, there is no doubt, that the second m om ent of the 
conditional distribution o f y} exists. A t the same time, given m odel M 2, the 
data locate index a in the regions that would preclude conditional normality of 
yj (cf. F igure 3.1). From  the definition o f stable random  variables it is 
equivalent with non-existence of the second conditional m om ent. Similarly as 
for posterior probabilities o f both models, inference about tails o f the conditio
nal distribution o f yj  changes for t greater that 600 and additionally become 
quite unanimous. After updating about t =  700 observations the hypothesis of 
existence o f the second conditional moment is strongly rejected in both models. 
F or t greater than  700 H PD  intervals for a (in M 2) and v (in M 2) are both 
tightly located around the value 1.5 precluding existence o f the variance of the 
conditional distribution o f у}.

Figure 3.2 in Table 3 presents the H PD  intervals o f tail param eters in 
My  and M 2 obtained in dataset B. Both models yield different inform ation 
abou t existence o f conditional m om ents of y}. F rom  the definition of stable 
family, stable G A R C H  specification precludes existence o f second m om ent 
o f p (y j \ y S j - i ,M 2, 0, tj2). As seen from Figure 3.2 the H P D  intervals for 
param eter a are very tight and located very close to  value a =  2. Additionally, 
location as well as spread o f the H PD  intervals o f param eter a remains 
insensitive to  new observations updated in dataset B. In spite o f significant 
changes in dispersion o f the H PD  intervals o f param eter v in m odel My,  
there is no doub t tha t p ( y j W j - \ , M 2, 0, rj2) posses variance (cf. F igure 3.2). 
The plot o f lower bound o f the H PD  intervals o f v shows, tha t for t >  120 
m ore than 95%  o f the posterior probability o f p(v |y(l), My)  is concentrated 
on the left side o f the value v =  2 (see Figure 3.2).

H PD  95% intervals o f asym m etry param eters are presented in Figure 3.3 
(dataset A) and F igure 3.4 (dataset B). By grey horizontal lines we located 
symmetric cases o f the conditional distributions (for My  it is the case with 
у =  1 and for M 2 it corresponds to ß  =  0). In case o f dataset A, just like 
for tail param eters, both models yield different conclusions about asymmetry 
o f the conditional distribution of yj  for t =  100, ..., 600. U nder model My,  
dataset y(I) (for t =  100, ..., 450) build posterior distribution o f у with very 
volatile location and dispersion. It makes uncertainty about possible skewness



o f the conditional distribution o f y} (given M x) very »sensitive to  new 
observations updated in dataset. Huge negative outliers, together with the 
region o f no variability (£ =  500, ..., 650) leads to  very tight posterior 
d istribu tion  p(y |y(,)) for í =  400, 600, where 95%  o f  the posterior 
probability is located at the very small region o f param eter space. Dataset 
y(t) (for £ =  400, ..., 600) leaves no doubt that conditional distribution of 
daily growth rates (given model M y) is skewed to  the left. F o r £ greater 
than  600 the H P D  intervals for param eter у quickly s ta rt to  widen. 
Consequently, given m odel M ,, for £ greater than 600, the d a ta  y(,) do not 
preclude symmetry o f the conditional distribution, because the value у =  1 

lies am ong lower an upper bound of the 95% H PD  interval. In m odel M 2 
the H PD  interval o f the asymmetry param eter ß  seems to  be m ore dispersed 
and less sensitive to  new observations than the H PD  interval for param eter 
у in m odel M v  Except for £ =  100, 150 and t =  480, ..., 650, the dataset 
y ( 0  do  not preclude symmetry o f the (stable) conditional distribution o f y}. 
In m ost cases o f £ the value ß  =  0 lies either in the interior o f  95%  H PD 
interval o r is very close to  its upper bound. In m odel M 2, the d ata  always 
support the hypothesis o f left asymmetry o f the conditional distribution of 
yj, rather than  right asymmetry. Except for a very few cases o f £, the 
m ajority o f the probability o f the posterior d istribution o f ß  lies below the 
value ß  =  0 (see Figure 3.3).

Quite regular fluctuations of daily returns o f PLN / USD exchange rate 
(dataset B) makes, in model M „  inference about possible skewness of 
p(yJ\i// j-l , M 1,0,Tii)  consistent with model M 2. F rom  Figure 3.4 we see, 
that, for £ =  100, ..., 500, both models support symmetric case, leaving 
great uncertainty about possible right or left asymmetry of p{yj \[)/j-i , M i, 0, j/j). 
F o r £ =  100, ..., 500 the H PD  intervals of ß  and у are very dispersed and 
its location and spread is very sensitive with respect to  the new observations. 
But, for £ >  500, both  specifications support hypothesis of right asymmetry 
o f conditional distribution o f y;-. As in m odel M 2, for £ >  500, the H PD  
intervals o f  asym m etry param eter ß  lies on the right side o f the value ß  =  0 , 
stable G A R C H  supports right asymmetry stronger than  m odel M v  In case 
o f My  the H PD  interval for asymmetry param eter у includes symmetric 
case (y =  0 ), but the m ajority o f posterior probability mass o f p(y\yl,\  M x) 
is concentrated on the right side o f the value у =  0 .

Figure 4 presents quantiles o f order 0.95 and 0.05 o f the one-step 
predictive densities at time £ (predictive distributions o f y t + 1  given y(t)) 
obtained from both models in datasets A and B. Figures 4.1 and 4.3 plots 
the quantiles o f p(yt + i \ M h y(i)) in case of dataset A, while Figures 4.2 and 
4.4 relates to dataset B. As usual, in the third row we put our time series 
(A and В ) in order to asses sensitivity of spread of considered predictive 
distributions with respect to new observations у  у  T im e varying inverse
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Fig. 4. Quantiles of orders 0.95 and 0.05 of the one-step predictive densities obtained from models 
M 1 (it =  100, 1398) and M 2 (t =  100, 1657)
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precision in M  j and scale param eter in M 2, which arc both modeled by 
asym m ctric-G A R C H (l, 1) equation, m ake one day ahead predictive densities 
very sensitive to  new observations included in observed time series. For 
both datasets, spread o f p(y,+ l M i, y(,)) (as measured by quantiles o f order 
0.05 and 0.95) instantly responds to  changes in the volatility (dataset B) 
or occasional huge outliers (dataset A). A dditionally, either dataset A or 
В indicate, that stable G A R C H  model generate one day predictive densities 
m ore dispersed than those obtained from model M ,.

Visible difference in distance between quantiles o f order 0.05 and 0.95 
o f the predictive distributions p(y l + 1  |M „ / ° )  ( i =  1 , 2 ) m ay be the crucial 
point in analyzing discrepancies of data  support o f skewed-i and stable 
G A R C H  models. In the constant location and scale fram ework Fernandez 
and Steel (1998) com pared sampling distributions obtained from skewed-t 
or stable assum ption about the error term. T he benchm ark o f com parison 
was em pirical distribution of modeled time series. As a one of the results, 
which was also obtained for m any time scries by Rachev and M ittnik 
(2002), Fernandez and Steel (1998) report alm ost im perceptible differences 
in da ta  fit of skewed-i and stable regression models. The plots o f sampling 
densities obtained from location and scale skewed-t and stable models were 
very similar, and fitted well to empirical density. As seen from Figure 4, 
taking into consideration the posterior uncertainty about param eters, makes 
the predictive densities (obtained from M , and M 2) very different. It seems 
that both  models reflect different posterior inform ation abou t com m on and 
model specific param eters. Consequently, and M 2 yield different ex-ante 
uncertainty about future growth rates.

6. CONCLUSIONS

In A R (1)-G A R C H (1 ,1) framework for daily returns, proposed and 
adopted by Bauwens and Lubrano (1997), Bauwens et al. (1999) Osiewalski 
and Pipień (2003), there are considered in the paper two types o f con
ditional distribution. In the first model (M t) we assumed conditionally 
skewed-i distribution (defined by Fernandez and Steel 1998) while the 
second G A R C H  specification (M 2) is based on the conditional stable 
distribution. We presented Bayesian updating technique in order to  check 
sensitivity o f the posterior probabilities o f considered specifications, with 
respect to  new observations included into dataset. We also studied differen
ces between Bayesian inference about tails and asym m etry o f the con
d itional d istribu tion  o f daily returns and the one-step predictive d ist
ributions obtained from both models.



Based on very volatile daily growth rates o f the W IBO R one-m onth 
interest rates (dataset A, 1398 observations) as well as on daily returns 
on the PL N /U SD  exchange rate (dataset B, 1657 observations), we ca
lculated the posterior probabilities of models M , and M 2, and the po
sterior d istribu tion  o f param eters using dataset y (,\  for each t =  1 0 0  

up to  t =  T  +  T  +  1 (which is equal to 1398 for dataset A and 1657 
for B). T he m ain empirical result o f this paper is great sensitivity of 
the posterio r m odel probabilities with respect to  new observations o f 
yj included in to  dataset. Daily returns o f dataset A characterized by 
very weak variability with unexpected huge negative outliers decisively 
supported G A R C H  m odel with conditional stable d istribution. A fter in
cluding m ore volatile observations into dataset A, we observed tha t the 
posterior probability  o f m odel M , started to  increase. F o r dataset В we 
observe successive growth of the strength o f the d a ta  support in favor 
o f m odel M ,. F o r t >  1100 observations o f daily  re tu rn s  o f the 
PL N /U SD  exchange rate, skewed-i G A R C H  m odel receives the whole 
posterior probability, m aking stable G A R C H  com pletely rejected by the 
dataset B.

We also checked conform ity o f inference abou t tails and asymmetry of 
the conditional distribution o f daily returns. In case A, for short time series 
both  m odels yielded different inform ation abou t existence o f m om ents as 
well as possible skewnes of p(yJ\y/ j^l , M l, 0, rj -̂ However, for datasets, which 
consisted m ore than 700 observations of daily growth rates o f W IB O R lm , 
both  models pointed to qualitatively similar results of the properties o f the 
conditional distribution o f yy  For dataset В stable G A R C H  m odels was 
not able to m odel properly tails o f the conditional distribution o f returns. 
H PD  intervals of the degrees o f freedom param eter in m odel M i (skewed-£ 
G A R C H ) decisively supported hypothesis, that the second and third con
ditional m om ent o f p ( ^ | ^ - i , M 1 , 0, t}x) exist. However, tightly concentrated 
around value v =  3 posterior distribution p (v |/ ° ) ,  precludes conditional 
norm ality. D ataset В supported m ore flexible skewed-г G A R C H  models, 
m aking conditional stability im probable a posteriori.

Both m odels built one day predictive distributions very sensitive to new 
observations included. We observed instan t reaction o f the spread o f 
p(y, + i |M j, yw) (i =  1 , 2 ) on occasionally appeared outliers or unexpected 
intensifications o f volatility. F o r both datasets predictive d istribu tions 
obtained from m odel M 2 has greater dispersion than  those obtained from 
skewed-i G A R C H  model. It seems that, in building predictive distributions, 
posterior uncertainty about com m on and m odel specific param eters of 
specifications M x and M 2 lead up to different ex ante uncertainty about 
fu ture grow th rates.
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DYNAMICZNE WNIOSKOWANIE BAYESOWSKIE W PROCESACH GARCH 
ZE SKOŚNYMI T-STUDENTA I STABILNYM ROZKŁADEM WARUNKOWYM

(Streszczenie)

W artykule przedstawiono modele AR(1)-GARCH(1,1) dla dziennych stóp zmian (por. 
Bauwens i Lubrano 1997, Bauwens i in. 1999, Osiewalski i Pipień 2003) z różnymi typami 
rozkładu warunkowego. W pierwszym przypadku (model M x) rozważono warunkowy rozkład 
skośny t-studenta (zdefiniowany przez Fernández i Steela 1998), podczas gdy model M 2 to



proces GARCH o warunkowym rozkładzie a-stabilnym. Prezentujemy bayesowską aktualizację 
rozkładów a posteriori i predyktywnych (wraz z napływem nowych danych) w celu zbadania, 
czy typ rozkładu warunkowego zadany w procesie GARCH wpływa na wnioskowanie o naturze 
procesów opisujących zmienność finansowych szeregów czasowych o dużej częstotliwości. Rezultaty 
dynamicznej estymacji wykorzystującej podejście bayesowskie zilustrowano na przykładzie dwóch 
szeregów czasowych, tzn. dziennych stóp zmian kursu walutowego PLN/USD oraz oprocentowań 
jednomiesięcznych lokat międzybankowych (WIBORlm).


