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HIERARCHICAL LOG-LINEAR MODELS  

FOR CONTINGENCY TABLES 

Abstract. Log-linear models are widely used for qualitative data in multidimensional 

contingency tables. Hierarchical log-linear models are models that include all lower-order terms 

composed from variables contained in a higher-order model term. The starting point is a saturated 

model, then homogenous associations, conditional independence and complete independence. 

There are several statistics that help to choose the best model. The first is the likelihood ratio 

approach, next is AIC and BIC information criteria. In R software there is loglm() function in 

MASS library and glm in stats library. The first approach is presented in this paper. 
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I. INTRODUCTION 

 

Log-linear analysis is a widely used tool for modeling qualitative data in 

contingency table. Log-linear models provide a powerful tool for teasing out the 

relationships among the variables in multi-way contingency tables. In this paper 

log-linear analysis for contingency tables is presented. Log-linear analysis is 

technique that makes no distinction between dependent and independent 

variables and it is used to examine relationship among categorical variables. The 

standard approach is hierarchical modeling, where a set of possible model is 

chosen by regarding fit criteria. There are two approaches called stepwise 

procedure in model selection: stepwise selection and backward elimination. In 

log-linear analysis expected values of the observations are given by a linear 

combination of a number parameters. Maximum likelihood method is used to 

estimate the parameters, and estimated parameter values may be used in identifying 

which variable are of great importance in predicting the observed values. 

II. CONTINGENCY TABLE 

 

The problem of interaction between variables was developed by Bartlet 

[1935], Roy and Kastenbaum [1956], Darroch [1962], Birch [1963] and 
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Goodman [1970]. A widely test used for testing the independence model is 

the Pearson chi-square test or likelihood ratio defined as: 
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Statistical independence between row and column variable is: 
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 The frequencies equal:  
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Depending on which marginal frequencies are fixed from the begin of the 

study and hence, which marginal frequencies are random, it is essential to 

distinguish between the distributions of the cell frequencies in the table. There 

are three possible survey distributions in contingency table (Mair [2006]): 

multinomial, product-multinomial and Poisson distribution, but the most 

frequent for hierarchical log-linear models is Poisson. 

III. ODDS AND ODDS-RATIO 

 

Odds are the ratios of the probability of an event occurring to the probability 

of the event not occurring. Odds ratio is defined as (Agresti [2002]):
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There is another function of the odds-ratio called Q Yulle`s statistic (Knoke, 

Burke [1980]): 
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ranges from [-1,1], with „0” indicating no relationship between variables. 
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IV. OVERVIEW OF MODELS FOR TWO-WAY CONTINGENCY 

TABLE 

 

There are several types of log-linear models for two-way contingency table. 

Saturated model includes all the possible effects to explain every single expected 

cell frequency is: 
XY
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hhjn )log(ˆlog , where:  

represents an overall effect or a constant, 
X

h  represents the main or marginal 

effect of the row variable X , 
Y

j  represents the main or marginal effect of the 

column variable Y .  

V. TESTING AND GOODNESS-OF-FIT 

 

In addition, the use of the model selection criteria will be discussed. The 

main goal is to find the smallest model that fits the data. The overall goodness-

of-fit of a model is assessed by comparing the expected frequencies to the 

observed cell frequencies for each model. The goodness of fit of a log-linear 

model can be tested using either the Pearson chi-square test statistic or the 

likelihood ratio statistic (1). In order to find the best model from a set of possible 

models, additional measurements should be considered. Akaike information 

criteria (Akaike [1973]) refers to the information contained in a statistical model 

according to equation: 

 

 dfGAIC 22 . (6) 

 

Another information criteria is Bayesian Information Criteria (Raftery 

[1986]): 

 

 ndfGBIC ln2 . (7) 

 

Significance of test statistics is measured by their p-value. A test statistic 

fails to achieve a predetermined minimum level of significance  if p  and 

it maintains that level of significance if p . A proposed value for  error 

lies between 0.1 and 0.35 (Bishop et al., [1975]). When the null hypothesis is 

rejected, the result is said to be statistically significant. In this paper -error is 

set to be 2.0 . 
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VI. APPLICATION IN R 

 

This data frame contains the responses of 237 students at the University of 

Adelaide to a number of questions (Venables, W. N., Ripley, B. D. [1999]). Data 

is available in library(MASS), data(survey). Log-linear analysis with 

three categorical variables: Sex (“Male”, ”Female”), W. Hnd (“Right”, 

“Left”), Exer (“Freq”, “Some”, “None”). Log-linear analysis can be used 

with the use of loglm function. 

>  print(model.no.interaction)

Call:

loglm(formula = ~Sex + W.Hnd + Exer, data = 

contingency.table,

    fit = T, param = T) 

Statistics:

                       X^2 df  P(> X^2) 

Likelihood Ratio  9.713843  7 0.2053780 

Pearson          10.066693  7 0.1848254 

 

For model with no interaction the likelihood ratio is P(>X^2)=0.205 what 

means, that model is fitted well and we can select this model and final model. In 

the next step models containing pairs of interaction will be tested.  
> model.no.interaction.plusSW <- 

update(model.no.interaction, .~. + Sex:W.Hnd, 

data=contingency.table)

>  print(model.no.interaction.plusSW) 

Call:

loglm(formula = . ~ Sex + W.Hnd + Exer + Sex:W.Hnd, data = 

contingency.table,

    fit = T, param = T) 

Statistics:

                      X^2 df  P(> X^2) 

Likelihood Ratio 9.167555  6 0.1643719 

Pearson          9.258123  6 0.1595734 

>  model.no.interaction.plusSE <- 

update(model.no.interaction, .~. + Sex:Exer, 

data=contingency.table)

>  print(model.no.interaction.plusSE) 

Call:

loglm(formula = . ~ Sex + W.Hnd + Exer + Sex:Exer, data = 

contingency.table,

    fit = T, param = T) 
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Statistics:

                      X^2 df  P(> X^2) 

Likelihood Ratio 3.659013  5 0.5994751 

Pearson          4.097142  5 0.5355164 

>  model.no.interaction.plusWE <- 

update(model.no.interaction, .~. + W.Hnd:Exer, 

data=contingency.table)

>  print(model.no.interaction.plusWE) 

Call:

loglm(formula = . ~ Sex + W.Hnd + Exer + W.Hnd:Exer, data = 

contingency.table,

    fit = T, param = T) 

Statistics:

                      X^2 df  P(> X^2) 

Likelihood Ratio 8.082703  5 0.1517362 

Pearson          8.022221  5 0.1550152 

 

Only one model (model.no.interaction.plusSE) fits data with p-value 

greater than 0,20. The next model is build.  

 
>  print(model.interaction2) 

Call:

loglm(formula = . ~ Sex + W.Hnd + Exer + Sex:W.Hnd + 

Sex:Exer +

  W.Hnd:Exer, data = contingency.table, fit = T, param = T,

  print = TRUE) 

Statistics:

                      X^2 df  P(> X^2) 

Likelihood Ratio 1.303964  2 0.5210121 

Pearson          1.348596  2 0.5095139 

 

For the next model the likelihood ratio is P(>X^2)=0.521 what means that 

the second model also fits data and observed and expected cell frequencies do 

not differ. The next step is to compare all models that fit data and to choose one 

using likelihood ratio statistic. Each item in the last column (Delta(Dev)) 

compares Deviance between the current row and the previous row.  

          Deviance df Delta(Dev) Delta(df) P(> 

Delta(Dev)

Model 1   9.713843  7

Model 2   3.659013  5   6.054830        2        0.04844 

Model 3   1.303964  2   2.355049        3        0.50206 

Saturated 0.000000  0   1.303964        2        0.52101 
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Table 1 presents comparison using other statistics ( ,2  ,
2

G  ,AIC  BIC  and 

2R ). 

Table 1. Goodness-of-fit for tested models with the hierarchy principle 

Symbol Model 2  2G  df AIC BIC  2R  df  

EWS  model.no.interaction 10.067 9.714 7 -4.286 -28.563 0  

WSE  model.no.interaction.plusSE 4.097 3.659 5 -6.341 -23.681 0.623 2 

ESWSWE  model.interaction2 1.349 1.304 2 -2.696 -9.632 0.866 3 

SEW  saturated model 0 0 0 0 0 1 2 

Source: own calculations. 

 

The model that fit data well is model model.interaction2 

( ESWSWE ). This model is a model of homogenous association and no 

graphical result is available. In this model any interaction between two variables 

is permitted. Its deviance is close enough to the deviance for the saturated model 

to give the p-value greater than 0.20. Fitted counts for this model are given: 
, , Exer = Freq 

        W.Hnd 

Sex          Left   Right 

  Female 1.965148 46.0351 

  Male   4.034852 60.9649 

, , Exer = None 

        W.Hnd 

Sex         Left     Right 

  Female 1.09609  9.903966 

  Male   1.90391 11.096034 

, , Exer = Some 

        W.Hnd 

Sex          Left    Right 

  Female 3.939492 54.06017 

  Male   4.060508 35.93983 

VII. CONCLUSION REMARKS 

 

Log-linear models are very effective statistical tool for analyzing multiway 

tables. The procedure using hierarchical models is widely used in marketing, 

social and psychological research providing information about data structure. 

Log-linear models have two advantages: they are flexible and interpretable. Log-

linear models are extendable for any dimensionality of contingency table. 
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Interaction parameters are most useful in association interpretation. Log-linear 

models can be estimated in R software with loglm and glm function but the 

most popular models are hierarchical.  
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HIERARCHICZNE MODELE LOGARYTMICZNO-LINIOWE DLA TABLIC 

KONTYNGENCJI 

 

Hierarchiczne modele logarytmiczno-liniowe s u  do analizy struktury zale no ci 

zmiennych w postaci tablicy kontyngencji. Modele budowane wed ug zasady hierarchiczno ci s  

modelami hierarchicznymi. Do modeli tych zaliczany jest model pe ny, model niezale no ci 

homogenicznej, model niezale no ci warunkowej oraz model niezale no ci ca kowitej. Do 

kryteriów wyboru modelu nale : wspó czynnik najwi kszej wiarygodno ci, kryterium 

informacyjne AIC oraz BIC. Analiza logarytmiczno-liniowa w programie R mo liwa jest dzi ki 

funkcji loglm() z pakietu MASS oraz funkcji glm z pakietu stats.  


