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HOMOSCEDASTICITY TESTS FOR THE LINEAR TREND

Abstract. In this paper we consider single parameter models of heteroscedastidty:
linear, square, exponential, group. A significant predominance of the parametric tests
over the peak tests is shown using the variability coefficient as the most natural measure
of homosccdasticity and the summary Kendal statistic as a measure of a test power.
Another suggestion is that it is worth using the Goldfeld-Quandt parametric test, when
the growth in the variance is quite ,smooth” (in other case - the classical F-lesl is
better). Prevalence of the F-test over the peak test is much smaller.
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heteroscedastidty, Fc statistic test power, quantiles.

1. INTRODUCTION

Goldfeld and Quandt (1965) presented two propositions of the
homoscedasticity tests for the random component in a one equation
econometric model. On the basis of the Monte Carlo experiments the
authors stated, that power of both tests is satisfying. This conclusion
however, must lead to some doubts. Power evaluations obviously show
considerable predominance of the parametric test over the non-parametric
test. On the other hand, power comparisons of the Goldfeld, Quandt
and Welfe (1998) parametric test power (see also: Pagen, Ullah (1999),
Charemza, Deodman (1997), with the Theil’s (1971) Best Linear
Unbiased Scalar (BLUS) test and the tests of Harvey and Philips
(1974), performed by the latter on the basis of accurate calculations show,
that the Goldfeld and Quandt test is as good as its two other competitors.
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The purpose of this paper is to provide a further contribution to the
power evaluation of the Goldfeld Quandt homoscedasticity test.

In order to achieve more precise results, the investigation was reduced
to the linear trend models and was based on a higher number of samples
namely 10,000.

2. GOLDFELD AND QUANDT HOMOSCEDASTICITY TEST

Consider a linear econometric model written in matrix notation as
y = Xa + ¢ 1)

where for the variance-covariance matrix of the random component e,
satisfying other classical assumptions, the heteroscedasticity

alo ..o
d 2e - a = 0 a\ e O
@)
00 .. al
is allowed (see, e.g., Goldberg (1966)).
Suppose we want to verify the hypothesis
tf, a2 = a2 = .. = a2 (©))

against a somewhat obscure alternative hypothesis having monotone hetero-
scedasticity,

@)
Let
e = y- Xa )

be a vector of residuals obtained from the model (1) fitted by the least
squares estimate

« = (XT X)'1XTy

of a (T denoting transposition).



2.1. THE PEAK TESTS

We say that the I-th residual (t = 2, 3,..., n) makes the ,peak”, if
\e\ > \ew for each un = 1 t-1. The statistic of the non-parametric
Goldfeld-Quandt test is the number of such peaks, i.e. the number of
residuals for which the above inequalities hold, which can be written as

G =card {/:2 < t ™ n, \e\ > \euw for any n = 1, M) (7

2.2. GOLDFELD-QUANDT PARAMETRIC TEST

Let us now present the matrix X and the vectors y and e in the form

X2 Y2

where x,, y,, e, incorporate the first n, rows or elements of X, vy, e,
respectively, x2 y2 e2 the last n2 such rows or columns, while Xc, yc, ec
contain the remaining (n - (1, + 12 rows or columns, being then called
the ,central” observations.

The concept underlying the Goldfeld-Quandt test consists in the ap-
plication of the classical .F-test against group heteroscedasticity, and the
exclusion of nc + 5, —2 ,,central” observations. Let

e, =y, - Xot, where a = (X X,)4 X\y, 9
and
e2= Y2- XZ2where a2 = (XA X2 “ X" y2 (10)
The statistic
F = Bl (> (11)
e2e2l («2- k)

where Kk is the rank of the matrix X, assumed to be equal to the ranks
of X, and X2 (here equal to their number of columns), has under (3)
a central F distribution with nrk and n2k degrees of freedom.



3. DEFINING THE PROBLEM

The objective of the paper is evaluation of a further evaluation of the
power of the Goldfeld-Quandt tests, and particularly, the peak tests. We
base our examination on the results of the Monte-Carlo experiments. In
the paper the following single parameter types of heteroscedasticity will be
considered (see, eg. A. Tomaszewicz (1987)):

(a) linear heteroscedasticity

o] = al &, (8, t) = a\ |.|_/\) (12)

(b) square heteroscedasticity

t- 1

SE ok (B, 0 = a\ 1+R (13)

(c) exponential heteroscedasticity

= o\ >0 =
al] = <& (A 0 = a\ e (14)
(d) group heteroscedasticity
al= al gaip, 0 = J\+r3 (15)
Parameter B must be selected so that o] > 0 for / = 1, 2, ..., n.

To compare different models, one needs a common measure of homo-
scedasticity. As the most natural measure the coefficient of variability
(variattion) can be chosen i.e. the coefficient

Jw W -Ww (16,
72
where 62 = . '1:' d]
Note that expressing the mean squared deviation of the set a\, a\, ..,

a2 in the units of their mean, this measure is independent of the propor-
tionality coefficient cr2.



As it has already been stated, we confine ourselves to the linear trend
model (1), where the matrix X is of the form

r S T

Goldfeld and Quandt (1965) suggest, on the basis of the obtained
results, that the number of the rejected observations nc should amount
approximately to 30% of their total number (with at the same time the
postulate of n, = n?. This conclusion cannot, however, be considered as
general since the optimal number of nc depends both on the structure of
matrix X, and on the type of heteroscedasticity.

Before we start analysing the power of the Goldfeld and Quandt tests,
we establish the optimal number nc which is a function of nu provided
that n, —n2 : nc= n- 2nt.

Under the general alternative hypothesis (4), without postulating a hctero-
scedasticity model, the determination of the number of observations nl (and
hence ng maximizing the power of the heteroscedasticity test is impossible.
Moreover, one can state that for the group heteroscedasticity (15), if u, in
(11) is known, the test is most powerful for n2= n-n,, ie. for n = 0.

As the Goldfeld-Quandt tests are recommended to verify general alter-
native hypotheses (4), when the heteroscedasticity model is unknown,
defining n[ should be a sort of compromise between various forms of the
model. In our examination we assumed the following heuristic procedure
based on subjective premises.

For:

- four types of heteroscedasticity (12), (13), (14), (15)

- n = 10, 20, 30, 40, 50, 60,

- 6 values of the variability coefficient.

In each of them the empirical power of the Goldfeld-Quandt parametric
test was determined i.e. the quantity X (n, a, u,, v, B).

Depending on:

- the number of the observations considered, «, = n2

- significance level a = 0.10, 0.05, 0.01.

As a measure of the test power we have adopted the following summary
Kendal statistic

"2
V(n, «) = % k;S% % si8n a, u, v,/0-Un, a k, v, B) (18)

We prefer the non-parametric measure as being less sensitive to outliers.
For a given n, the series



= 19)
were then smoothed using a parabola
4>{n, n,) = a0(n) + a,(n)n,+ a2(n)n] (20)

(according to the least squares criterion). As the optimum value of n,

nn ") = --REAN) >
was assumed in a natural way, i.e. the value for which the left-hand side
in (20) reaches the maximum.

Supposing that the series n* (n) should be ,,smooth” enough, as the
optimum were assumed not the values n\ (n), but their approximations
also obtained by using OLS, and by using the parabola

n\\n) I n =DbB+ btn + b2n2
with the additional condition

bB = 5-10f + |OOftj,
equivalent to
/**(10) = 5

The calculated values n\(n), n\ (n) /n, n\'(n) / n, are presented in
columns 2-4 of Table 1. Its column 6 gives the number n,(n) equal to the
value of n\'(n) rounded to the next integer. Numbers n,(n) are further
considered as the optimum values of n, for the Goldfeld-Quandt parametric
test. Estimation of the error «,(«) is quite difficult. We repeated the
described experiment to get an idea of its size. The values of n\ obtained
in the second experiment are shown in column 7 of Table 1

Table 1
Optimal values nt(no (test Fo
n n\ () n,(n)/n n\(n)/n Difference " n - 1"
10 5.04 0.5038 0.5000 0.00385 5 5 0
20 7.54 0.3772 0.4356 -0.05837 9 9 0
30 11.86 0.3953 0.3903 0.00495 12 12 0
40 14.55 0.3638 0.3641 -0.00027 14 15 1
50 18.54 0.3508 0.3570 0.01284 18 18 0
60 20.82 0.3470 0.3689 -0.02196 22 22 0

Sources: the author’s own elaboration.



4. EVALUATION OF THE TESTS POWER

Ihe scope of the experiment, which formed the basis for evaluating the
power of the tests was the following. For:

- four types of heteroscedasticity (12)—15),

- 6 values of v (sec Table 2 and Table 3),

- 6 sizes of the sample n = 10, 20, 30, 40, 50, 60,

10 000 samples were drawn for each. In each of them the following
values were calculated:

Table 2
Power of the tests: peak, Goldfeld-Quandt and F in the case of linear
and square heteroscedasticity for a = 0.05
Heteroscedasticity Heteroscedasticity

N Linear test Square test

peak test o idfeld peak lest 5o lico v
-Quandt -Quandt

1 2 3 4 5 6 7 8 9
10 0.0 0.0515 0.0550 0.0550 0.0515 0.0850 0.0850 0.0
0.1 0.0735 0.0800 0.0800 0.0735 0.0800 0.0800 0.1
0.2 0.1102 0.1160 0.1160 0.1457 0.1840 0.1840 0.3
0.3 0.1290 0.1770 0.1770 0.1765 0.3780 0.3780 0.5
0.4 0.1982 0.2780 0.2780 0.2796 0.6540 0.6540 0.7
0.5 0.2182 0.3690 0.3690 0.2855 0.8660 0.8660 0.9
20 0.0 0.0610 0.0640 0.0610 0.0610 0.0640 0.0610 0.0
0.1 0.0765 0.1070 0.1110 0.0712 0.1050 0.1100 0.1
0.2 0.1288 0.2280 0.2270 0.1826 0.3760 0.3910 0.3
0.3 0.2238 0.4050 0.4200 0.3298 0.7700 0.7730 0.5
0.4 0.3218 0.6180 0.6510 0.4849 0.9590 0.9670 0.7
0.5 0.4744 0.7690 0.8040 0.5487 0.9940 0.9990 0.9
30 0.0 0.0521 0.0420 0.0420 0.0521 0.0420 0.0420 0.0
0.1 0.1026 0.1490 0.1490 0.9010 0.1480 0.1400 0.1
0.2 0.1605 0.3540 0.3550 0.2074 0.5910 0.6110 0.3
0.3 0.2989 0.5810 0.6160 0.4461 0.9180 0.9430 0.5
0.4 0.4447 0.7610 0.8210 0.6582 0.9930 0.9990 0.7
0.5 0.6157 0.9040 0.9540 0.6936 1.0000 1.0000 0.9
40 0.0 0.0520 0.0430 0.0460 0.0520 0.0430 0.0460 0.0
0.1 0.0918 0.1720 0.1790 0.0845 0.1660 0.1670 0.1
0.2 0.1952 0.4040 0.4350 0.2508 0.6670 0.6990 0.3
0.3 0.3330 0.6890 0.7640 0.5053 0.9800 0.9840 0.5
0.4 0.5025 0.8820 0.9320 0.7285 1.0000 1.0000 0.7
0.5 0.6709 0.9630 0.9860 0.7746 1.0000 1.0000 0.9
50 0.0 0.0467 0.0530 0.0610 0.0467 0.0530 0.0610 0.0

0.1 0.1160 0.2070 0.2350 0.1080 0.2060 0.2200 01
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Sources:

3

0.2165
0.3817
0.5825
0.7768
0.0488
0.1311
0.2660
0.4157
0.6333
0.8308

4

0.4880
0.7800
0.9350
0.9840
0.0430
0.2350
0.6050
0.8440
0.9630
0.9980

5

0.5310
0.8840
0.9660
1.0000
0.0490
0.2580
0.6230
0.8980
0.9860
0.9980

the author’s own elaboration.

0.2790
0.5503
0.7988
0.8518
0.0488
0.1216
0.3215
0.6059
0.8539
0.8989

0.7920
0.9910
1.0000
1.0000
0.0430
0.2220
0.8640
0.9980
1.0000
1.0000

Table 2 (cd.)

8 9
0.8040 0.3
0.9980 0.5
1.0000 0.7
1.0000 0.9
0.0490 0.0
0.2410 0.1
0.8930 0.3
0.9990 0.5
1.0000 0.7
1.0000 0.9

Table

Power of the tests: peak, Goldfeld-Quandt and F in the case exponential
and group heteroscedasticity for a — 0.05

0.0
0.1
0.3
0.5
0.7
0.9
0.0
0.1
0.3
0.5
0.7
0.9
0.0
0.1
0.3
0.5
0.7
0.9
0.0
0.1
0.3

Exponential
peak test

0.0515
0.0728
0.1487
0.1824
0.2733
0.2810
0.0610
0.0765
0.2005
0.3517
0.4744
0.5532
0.0521
0.0993
0.2425
0.4839
0.6693
0.7388
0.0520
0.0888
0.2929

Heteroscedasticity

test

Goldfeld
-Quandt

4

0.0550
0.0820
0.1890
0.3710
0.6060
0.8020
0.0640
0.1070
0.3830
0.7550
0.9440
0.9920
0.0420
0.1490
0.5940
0.9120
0.9900
1.0000
0.0430
0.1710
0.6680

0.0550
0.0820
0.1890
0.3710
0.6060
0.8020
0.0610
0.1100
0.4010
0.7660
0.9500
0.9950
0.0420
0.1440
0.6220
0.9400
0.9940
1.0000
0.0460
0.1790
0.7140

Group
peak test

0.0515
0.0963
0.1410
0.1954
0.2325
0.3648
0.0610
0.1021
0.2036
0.2658
0.2967
0.4207
0.0521
0.1251
0.2126
0.3201
0.3649
0.4317
0.0520
0.1253
0.2535

Heteroscedasticity

test

Goldfeld
-Quandt

7

0.0550
0.1430
0.3400
0.6550
0.9590
1.0000
0.0640
0.2520
0.7290
0.9840
1.0000
1.0000
0.0420
0.3790
0.9080
0.9990
1.0000
1.0000
0.0430
0.5020
0.9570

0.0550
0.1430
0.3400
0.6550
0.9590
1.0000
0.0610
0.2420
0.6680
0.9640
1.0000
1.0000
0.0420
0.3190
0.8300
0.9970
1.0000
1.0000
0.0460
0.4130
0.8820

0.0
0.2
0.4
0.6
0.8
1.0
0.0
0.2
0.4
0.6
0.8
18
0.0
0.2
0.4
0.6
0.8
1.0
0.0
0.2
0.4



Table 3 (cd.)

1 2 3 4 5 6 7 8 9
0.5 0.5597 0.9750 0.9840 0.3542 1.0000 0.9990 0.6
0.7 0.7315 0.9980 0.9990 0.3830 1.0000 1.0000 0.8
0.9 0.8136 1.0000 1.0000 0.4616 1.0000 1.0000 1.0
50 0.0 0.0467 0.0530 0.0610 0.0467 0.0530 0.0610 0.0
0.1 0.1160 0.2090 0.2340 0.1485 0.6300 0.4800 0.2
0.3 0.3312 0.8020 0.8260 0.3032 0.9910 0.9450 0.4
0.5 0.6234 0.9900 0.9980 0.3654 1.0000 1.0000 0.6
0.7 0.8027 1.0000 1.0000 0.4049 1.0000 1.0000 0.8
0.9 0.8751 1.0000 1.0000 0.4446 1.0000 1.0000 1.0
60 0,0 0.0488 0.0430 0.0490 0.0488 0.0430 0.0490 0.0
0,1 0.1301 0.2340 0.2570 0.1848 0.7010 0.5559 0.2
0.3 0.3883 0.8650 0.9030 0.3034 0.9960 0.9780 0.4
0.5 0.6612 0.9970 0.9990 0.4041 1.0000 1.0000 0.6
0.7 0.8533 1.0000 1.0000 0.4487 1.0000 1.0000 0.8
0.9 0.9255 1.0000 1.0000 0.4582 1.0000 1.0000 1.0

Sources: the author’s own elaboration.

- the value of the statistic G of the Goldfeld-Quandt non-parametric test,
the value of the Fc statistic of the Goldfeld-Quandt parametric test
(for n, = 2= n - column 6, Table 1),
the value of the statistic F for the classical test against the group
heteroscedasticity (i.e. for a test based on the statistic (11) with ni + n2 = n,
i.e. nc = 0).

The values of the statistics of the above listed tests were compared with
the critical values for the levels of significance a = 0.10, 0.05, 0.01. The
results are presented for the value of 0.05.

A randomized version of the peak test was applied, on the basis of the
approximation formulas for quantiles

g(n, @ = S_2(@n2+ 6_{(am 1+ d60(a) + K (a)n + S2(a)n2

For a = 0.05 g(u0.05) = 20.4n'2- 16.027/I14- 5.549 + 0.054n -
0.000348n2 presented in the paper by Tomaszewicz (1993). Critical
values of the tests F and Fc are derived from the known tables of
A-distribution.

The observed evaluations of the powers of the tests for all the listed
cases are collected in Tables 2-3.

The obtained results prove significant predominance of the parametric
tests over the peak tests. As far as the comparison of the Fe Goldfeld-Quandt
test with the classical F test is concerned, the differences seem small: for
the group heteroscedasticity the classical F test predominates, in other cases



- the Fc test. The gain in power when using the Goldfeld-Quandt test is
the smaller, the more polarized the distribution of the variances a......
is, i.e. the more the heteroscedasticity model differs from the linear one.
Differences in the power depend weakly on the choice of the significance
level. Certainly, the tests power is higher when the significance level
a increases. Nevertheless, when including different levels of significance in
the experiment the shape of the test power curves remains similar.

One needs to pay attention to the fact that in the case of the group
heteroscedasticity, the power of the peak test docs not have to be an
increasing function of the heteroscedasticity parameter v. For large values
of v, the likelihood of satisfying the inequality

\e,\ < \eu\

for all pairs t =1, ..,n{ n=n + 1 n is close to 1. Hence, with the
likelihood close to 1, the statistic G (see (7)), is the sum of two independent
random variables

Gn=GH + Gni + 1

(increased by 1, as emtl always makes the peak), whose distribution is the
number of peaks in case of homoscedasticity (variances a) arc constant in
each of the groups of observation / = 1, n,oand t=n, + 1, ..., n).

The power is distinctly increasing together with the rise in n (for
v > 0). An exception here is the power of the peak tests for the group,
where one can observe only a slight growth.

On the basis of the performed experiments two conclusions seem
unguestionable.

1. The power of the peak tests is clearly smaller than the F test power,
so the only argument (although quite weak) advocating its use is the
simplicity of calculations.

2. Removal of the central calculations when using the F test results in
a certain increase in power, the larger, the more uniform the growth of
the variance of the random component is. In the case of a sudden increase
(group heteroscedasticity) one can risk a considerable loss in power. Hence,
it is worth using the Goldfeld Quandt parametric test, when there are clear
promises that the growth in a variance is quite ,,smooth”. In other cases,
it is better to maintain the classical F test.

However, our attention should be drawn to the fact, that the test was
performed under conditions favourable for the F test, particularly with the
assumption of normality of the random component distribution e. Perhaps,
if the distribution of e is different from the normal one, or some other
classical assumptions are not met, prevalence of the F test over the peak



test, non-parametric in its very definition, is much smaller. This hypothesis
is based on intuition only. Its confirmation or rejection needs some detailed
research.
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Czeslaw Domanski

TESTY HOMOSKEDASTYCZNOSCI DLA MODELU LINIOWEGO

(Streszczenie)

W literaturze statystycznej i ekonometrycznej bardzo wyraznie podkre$la sie znaczenie
i metody weryfikacji podstawowych zatozen dotyczacych modelu ekonometrycznego, chociaz
w praktyce niezbyt czesto postulat ten jest realizowany. W szczeg6lnosci chodzi tutaj
0 sprawdzenie zatozenia o homoskedastycznosci. Przedmiotem rozwazan bedzie model liniowy

y = Xa + e

dla ktérego spetnione sa klasyczne zatozenia z wyjatkiem zalozenia o homoskedastycznosci,
tzn. ze diagonalne elementy macierzy D2 sg sobie réwne. Zamiast tego zatozenia postuluje
sie ogodlniejsze

©0 00 0
0al 00 0
2= 00 0 0
000 0
000 0 4

przyjmujac zatozenie o braku autokorelacji, dopuszczajac jednoczesnie heteroskedastyczno$é.

W pracy rozwaza sie testy homoskedastycznosci oparte na modyfikacji statystyki F, ilorazie
wiarygodnosci oraz na resztach ortogonalnych. W szczegdlnosci prezentowana jest moc testéw:
Goldfelda-Quandta, szczytow oraz F.



