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Abstract. The technique of recursive least squares estimation for the standard 
regression model is extended lo the general linear model with possibly singular dispersion 
matrix of error term. It is shown how to update the minimum dispersion linear unbiased 
estimate of a given vector of parametric functions with respcct to additional sample data 
which are to be successively incorporated to the inference base.
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1. INTRODUCTION ANI) I’RFXIMINARIES

1 he technique of recursive estimation is commonly applied when estimates
o I parameters in the model have to be adjusted with respect to additional 
information contained in successively available sample data. Introduced by 
P l a c k e t  (1950) for the standard linear regression model, this technique 
under different assumptions on design and/or dispersion matrix was developed 
in a series oi papers, cf. M c G i l c h r i s t  and S a n d  l a n d  (1979), 
M c G i l c h r i s t ,  S a n d  l a n d  and H e n n e s s y  (1983), H a s l e t t  (1985), 
S a m  a n n a  (1989) and L i s k i  (1990). Our aim is to extend the approach 
lor the possibly singular linear model. Following the theory of least squares 
estimation in the general linear model, we shall derive recursively-oriented 
formula lor the minimum dispersion linear unbiased estimate (M DLUE) of 
a given vector of parametric functions. This allows us to unify procedures
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for updating the estimates of parameters with respect to additional sample 
data as well as linear restrictions which are to be successively incorporated 
to the inference base. The diagnostic of recursive residuals, as a tool for 
m onitoring stability of the singular linear model used for categorical data, 
cf. В о n e t t ,  W o o d w a r d  and Be n  t i e r  (1985), can be mentioned here 
as an example of application for our results.

We consider for an i-th step of analyzing data the general linear model

^ i = {yi, X i^ c j 2Vl} (1)

in which ^  is an observable random vector with expectation E(yt) =  X t ß 
and dispersion matrix D(yi) = a 2y l, where X t and Vt arc known fixed 
matrices of arbitrary rank, while a vector ß and a positive scalar a2 
are unknown parameters. We assume that the model is consistent, 
that is

<*(*,: V)

where ^ ( A ': Vt) denotes the column space of the partitioned matrix (XL: VJ. 
Let the object of our interest be a given vector of parametric functions 
x =  Ä'ß estimable in the -model J f t, i.e. 'Й’(К') £  #(Х,') and let й( =  ЛГ{1( 
stand for its M DLUE obtained under the model J t t. Now suppose that, 
in addition to (1), successive data are of the form

J i = { y ,X ^ ,a 2V), y e V ( X : V )  (2)

where A" and V are known matrices; the latter being zero-matrix, if (2) 
represents a set of linear restrictions imposed on the vector ß. Pooling both 
sources of information, the inference base is + wherein .y(+1 =  (у[:у')', 
X i+l = (X ! : X ) '  and Vl+l = Diag(Vi, V). In order to avoid recalculations 
while estimating x under the model JKl + b  we show how to adjust Й/ with 
respect to additional data given in M . For shortening the formulae presented 
in this paper, we assume throughout that the vectors y t and у  are uncorrelated. 
If it is not the case and extra information, say, {j>0, A'oß, a2V0} is such 
that Cov(yh y 0) = a 2 ľ i0, then by M  we mean transform ed data  
У =  Уо — Via УГ y  i, X  = X 0 — V'i0 Vi X t and V = V0 — V'i0 V,~ Vi0 which one 
obtains while diagonalizing the blocks of dispersion matrix in the pooled 
data model; in subsequence, we denote by A~ and r(A), respectively, 
a ^-inverse and rank of a matrix A.



2. CONSISTENCY CONDITION FOR THE POOLED DATA M ODEL

Due to possible singularity of the dispersion matrix in the model JV, 
and M,  the consistency of inference base (while pooling data) is to be 
considered. Clearly, obtaining a condition under which the model is
not self-contradictory poses no problem. Its derivation, however, allows us 
to introduced notation needed in the sequel. The pooled data model is 
consistent if and only if

U ~  Ti+i Ti+i)yi+1 = 0 (3)

where Tl+l =  Vi + l + X l+iX'l + l . By the well known formula for inverting 
a nonncgative definite (n.n.d.) partitioned matrix, one of g-inverses of J i+1 
takes the form

(гг

where F =  V + X(I  — C,)A" and

c i = x ; r l x i (5)

Substituting (4) to (3), one easily shows that the consistency condition 
for J^i + i can be expressed as ( / — FF~)(y -  Ajp,)=0, where

g, =  Х1ТГУ, (6)

In consequence, since the matrix / - С ,  is n.n.d., the following statement 
holds to be true.

Proposition 1. Let each of the models J t { and J t  be consistent. Then 
the pooled data model J t i + l is not self-contradictory if and only if

У — X g , e ^ ( y : X ( I — C$) (7)

Note that if the model J t t is weakly singular, that is, <g (X i) ^ <# (V l), 
then I — С, =  ( / +  XI Vt X t) 1 and thus (7) holds trivially. The same conclusion 
on consistency of Jr l+1 can be drawn when ^ ( X )  S  ^ (V) .



3. I HE RECURSIVE ESTIMATION OF PARAMETRIC FUNCTIONS

Let x, =  /Cp, denote the minimum dispersion linear unbiased estimate of 
x =  Aß in the model Jrt. Our purpose is to adjust x, with respect to 
additional information given in M. By the theory of least squares estimation 
in the general linear model, cf. R a o  (1971), the M DLUE of x  under J f l+i 
can be expressed as

x i+1 =  KCf+lg l+i (8)

where Ci+1 and g i+l are defined as in (5) and (6), respectively. We begin 
by noting that, in view of (4), it follows

Ct+l **Ct +  N ' F - N  (9)
and

ŕi+ i = g ,  + H ' F - ( y - X gl) (10)

where /V = X ( I -  C,). Since the matrix / - C ,  is n.n.d., it holds V(N)  a  <#(F) 
and, by Lemma 1 in K a l a  and K l a c z y ń s k i  (1988), one of ^-inverses 
of C/+1 takes the form

СГ - C ~ G C r  +(CrG-I)Q(Q'G Q) Q’(GC~ - I )  (11)
where C~  is a nonnegative definite ^-inverse of Ct, G =  N i l  N, 
H = N C ~ N '  +  F and Q =  l - C r C r Substituting (10) and (11) into (8) and 
m aking use of the assum ption (7) and equalities ( K : gi)Q  =  0 and 
GCt TV =  N ' — N ' II  F (the latter being a consequence of (Ś{N) £  # ( / / ) )  we 
obtain

xi+1 =  K C r 8i -  KCi~N'S(NCrg t — y  + Xgt) (12)

where

S = H  - H  N Q iQ 'N 'H  N Q Y Q 'N 'H -  (13)

To link recursively x, and xi + 1, let us now observe that N 'SN Q  = 0 
which, together with g , e V ( Q ,  and y - X g ieV(H),  implies that the formula
(12) is invariant with respect to the choice of a ^-inverse of C, and, 
consequently, it can be written as

* p i+1 =  к P, +  KZ'S(у -  X fr)  (14)

where p; =  C, g t, Z  =  X(Ci —I). Furthermore, note that the formula (14) 
is invariant with respect to the choice of a ^-inverse of I I  and Q 'N  'H ISQ \



putting C f =  C f C ,C f' we get NQ  =  X ( I -  C f C,) and H  = Z C Z ' +  F. Similar 
arguments applied for the dispersion matrix D(*l+1) = a2K{Cl^ i -  I)K'  lead 
to the following equation

D(*l+1) =  D(ftj) -  a2K Z 'S Z K ' (15)

For the special case, where V =  0, the problem of adjusting x, with 
respect to linear restrictions imposed on ß was discussed by K a l a  and 
K ł a c z y ń s k i  (1988). Extending their approach, by the formula (14), we 
bring together procedures for updating the least squares estimates of 
parametric functions with respect to additional sample data as well as 
non-stochastic information on parameters in the model.

Let us now consider a situation when additional set of data J i  is 
such that either (i) ff(A" ) £ В Д )  or (ii) ^ ( X ' ) n ^ ( X ' t) = {0}- this takes 
place, e.g.,when one by one observation and/or linear restriction is to be 
incorporated to the model We first focus our attention on updating 
x,- under the assumption (i); this certainly is the case in the linear regres­
sion model wherein the matrix X t is of the full column rank. Since 
NQ = 0, simplifying the formulae (14) and (15) leads to the following 
statement.

Proposition 2. I he M DULE of x =  /fß  under the pooled data linear 
model J{ j+1 wherein ^ ( X ' )  ę  # ( XI), can be expressed as

* P /+i = K ß i + K Z ’L ~ ( y - X ß i) (16)

where ßf =  C [ g h Z  = X(C[ -  Г) and L =  X (C f  — I)X' +  V. Moreover, it 
holds D (K$i+1) = D(K$t) — o2K Z 'L ~ Z K '.

For completing the recurrence, note that one of ^-inverses of the matrix 
Ci+1 takes the form

Ci+1 =  C f -  (Cf -  I)X '(X (C r - I ) X ' + V ) ~  X(Cf  - I )  (17)

The formula (16) was stated by L i s k i  (1990) under the additional 
assumption ^ ( X ^ ^ i V , ) ,  which would clearly not allow for m ore than 
one recursive adjusting of x, with respect to linear restrictions. A t the end 
of this section, concerning with the weakly singular linear model, we shall 
present its alternative form. We now turn  to the case (ii) where 
# (A ")n#(A 7) =  {0}. Taking into account the equality r(NQ) = r ( N ) - -  
dim{«’(yV')n«'(C,)} and the fact that (ii) implies (Л ^ п ^ С ,- )  =  {о}, we 
have r(Q'N'Il  NQ) = r(N'H~N).  Hence by Lemma 2.2.5 in R a o  and 
M i t r a  (1971), the matrix QÍQ'N'H~NQ)~Q'  is 0-inverse of N ' H ~ N  and, 
consequently, N ’SJI = 0. Assuming consistency of the model Jr i + 1 which 
implies y  — X ^ ie (ś(H),  the following conclusion can be drawn.



Proposition 3. For the M DULE of x  = ATp under the model 
wherein V(X ' )nW (X l )  = {0}, it holds

+ i =  Ä'ß, (18)

The procedure stated above enables us to apply the well known techniques 
of recursive residuals for monitoring stability of the general linear models 
(here, let us only mention that a singular dispersion matrix of error term 
occurs naturally, if finite randomization processes are included in the model 
construction).

At the end, let us restate the solution to the problem of recursive 
estimation under the weakly singular model ./^i+1 where ^ ( X l + 1) £  V ( V l+ ,). 
It is known that the M DLUE of * =  tfß  in the model J t l+l can be 
expressed as xi+1 =  KCf+ig l+1 where, from now to the end of this paper, 
Q  + i =  Xl+i Vi+lXi + l and gl+l = Х1+1УГ+1у 1+1. Following much in the 
same way as before (14), with N  and F  replaced by X  and V, respectively, 
we obtain

К ßi+1 =  К ß, +  KZ'wS i(y  -  * ß ;) (19)

and

D(Kfil+l) = D(Kfr)  -  o 2KZ'wS~K ' (20)

where ß; = C f  gi, Z W = X C f , =  / / „ ( /  -  X W{X'J1'WX W) ~ X WH ~ ) with 
H W = Z WC,Z'W+ V  and X w = X (I  — C f  C,). As previously, we may conclude 
that xł+1 =  ft„ if r ) n V ( X i )  = {0}, and

K ß i+t = K $ l + K C r X ,( V + X C r X r ( y - X $ l) (21)

if W (Ä") ę  ^(X'i)-, this extends for the case of weakly singular linear model 
the procedure stated by M c G i l c h r i s t ,  Sandland and Ilennessy (1983). 
Furthermore, assuming a full column rank of the matrix X i+1 and non­
singularity of y i+l the formula given in (19) coincides with the result by 
M c G i l c h r i s t  and S a n d l a n d  (1979) and H e n n e s s y  (1985). It is to 
be emphasized that extending the approach of recursive least squares 
estimation for possibly singular model enables us to unify procedures for 
updating the estimates of parametric functions with respect to both additional 
sample data and linear restrictions imposed on the location parameters of 
the model. The problem of recursive adjusting the scale parameter is not 
considered in this note and still remains to be solved in a context of the 
general linear model.
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Pawel R . P ordzik

REKURENCYJNA ESTYMACJA FUNKCJI PARAMETRYCZNYCH 
METODĄ NAJM NIEJSZYCH KWADRATÓW

(Streszczenie)

W pracy uogólniora zostala technika rekurencyjnej estymacji funkcji parametrycznych 
metodą najmniejszych kwadratów w ogólnym modelu liniowym. Proponowana procedura 
umożliwia aktualizację estymatorów zarówno ze względu na dodatkową stochastyczną, jak
i niestochastyczną informację o parametrach modelu.


