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RELATIVE POTENCY FOR THE MULTIVARIATE CONTAMINATED
NORMAL RESPONSES

Abstract. In this paper we focus on the impact of responses of contaminated
normal distribution on the relative potency. For several values of the contamination
parameters, the estimates of the relative potency, its goodness and the truthfulness
of the hypotheses connected with the estimation of the relative potency are tabulated
for the generated data sets.

1 INTRODUCTION

In biological assays, comparing two preparations: standard (known) and
test (new) we get the multivariate responses. In this case the relative
potency is frequently estimated. In the multivariate setting, to derive
the estimator of the relative potency we have to assume that the responses
are normally distributed. In practice, however, this assumption is not
necessarily fulfilled. It is of interest to study how the estimates of the
relative potency differ from the true value of the parameter in the cases
where responses do not fulfil the normality assumption. In this paper, we
concentrate only on the contaminated multivariate normal distribution of
the observations which is more frequently encountered. On the generated
data sets, for several values of the contamination parameters, the average
estimates of the relative potency, standard deviations of these estimates,
probability of acceptation and the hypotheses connected with the estimation
are tabulated.
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2. STATEMENT OF THE PROBLEM

In this section we recall the problem of estimation of the relative
potency in the multivariate setting. Let us consider an experiment with two
preparations: Standard denoted by S and Test denoted by T. Let the
preparations be applied on vt (i= S,T) doses: un, ui2, utvi, which arc
repeated nn, ni2, ..., niv times, respectively. For each dose of the preparations,
the same p-fcatures arc measured as the p variate response. Without loss
of generality, we can assume that the doses arc applied to homogeneous
units. Then, it is well known (see Finney, 1978) that each response yik
can be described as

W=+ Btxij+ey» i—S, T, y=1, ..., vt k=1, Ay,

where ait /i, are (pxI1) vectors of intercepts and slopes, x,j is the logarithm
to base 10 of the dose utl Note that the relative potency, denoted by p,
is defined as the ratio of the dose of the Standard preparations to the
dose of the Test preparations which give the same multivariate responses,

ur
sO p— As yiik depends on the logarithms of the doses so we also
us

consider the logarithm of the relative potency, denoted by u, which is the
distance between the logarithms of the proper doses of the preparations.
The total model of the experiment thus defined can be written as follows:

Y=XB+E (D

matrix, whose rows are equal to

of all Xij in the same order as the observations in the matrix Y,, 1, is the

matrix of errors whose rows are mutually independent and normally
distributed with null vector of expectations and the same covariance
matrix Yj- Before we get on to the presentation of the results of estimation,
we will briefly describe two fundamental hypotheses connected with the
estimation of the hypothesis about the parallel-line designs and the hypothesis
about the relative potency.



2.1. Hypothesis about a parallel-line design

The relative potency of two preparations is derived in so the called
parallel-line designs, having the same vectors of slopes: RBs and RT. The
equality of the slopes is expressed as the following hypothesis:

Hp:CB = 0" versus Hp:C'B 0 (2)

where C '= (0, 1, 0, —1). To test (2) one can use Wilks' lambda statistic
which is an F Snedecor statistic taking the form (see Hanusz, 1998):

Fo _ns+ nr—r(X)—p + 1 (C'E)Sil(C'fi)’
P CCHXX)-C

where B = (X'X)~ IX"Y,SE= (Y —Xfi)'(Y - Xfi), r(X) is the rank of X. The

hypothesis L in (2) has to be accepted to have parallel line design.

2.2. Hypothesis about the relative potency

Under the truthfulness of the null hypothesis in (2), the model (1) is
rcparametrized to the following model:

X=XB+E 3)

where X = A B = (as,ar,B)’; and as, ar remain the same

as in the model (1) but B is the common vector of the slopes. The
main hypothesis about the logarithm of the relative potency p. is written
in the form:

H°:C;B =0" wversus 11j,:C"B ®0' 4)

where = (1, —1,/i). The hypothesis is tested by Wilks” lambda
statistic taking the form (see, Hanusz, 1995):



where

(C;B)S£ 4c;fi)’
C;(X'Xj-tC,

ft = (X'X)"*X'Y,

SE= (Y - Xfi)(Y - XRB).

Considering the fact that Ins+ nT—r(X)— [In(1+ K,) has

approximately x2 distribution with (p —1) degrees of freedom (see Williams,
1988), we can test the null hypothesis in (4). The estimator of the logarithm
of the relative potency is such [ which maximizes under the truthfulness
of the of the null hypothesis in (4).

3. RESULTS FOR GENERATED DATA SETS FROM NORMAL DISTRIBUTION

Testing the hypotheses and estimation of the relative potency presented
in the previous section are carried out assuming that all observations have
a p-variate normal distribution. In this section we illustrate the results
obtained for the generated data sets, having the normal distribution. In
order to get the estimates of the logarithm of the relative potency and to
observe the probabilities of the truthfulness of the null hypothesis in (2)
and (4), the following parameters in the model (1) were fixed:

p—3, vs=vT= 3, usj = n-n = 250, us2 —Mrr = 500, us3 = U73 = 1000,

Let us notice that the values of the model parameters are chosen in such
a way that the logarithm of the relative potency u is equal to one. Namely,
the difference ar —as is the same as R( = Bs —BT), so the parameter y of the
null hypothesis in (4) has to be one. For the different numbers of dose
replications, calculations were repeated 100 times for the generated data sets
using MapleV package. The hypotheses were tested on 5 percent of the
significant level. The results obtained by simulations are presented in Tab. 1



Table 1

Probabilities of truthfulness hypotheses, average estimates of logarithm of relative potency and
standard deviation of estimates for the normally distributed data

Dose  replications o/lj iy Mo i) \y—/21<02 jAUAH ft

S,

ns®5 wHy 5 0.90 0.%4 044 0.37 107 041
5 nr=10 0.90 0.%4 0.56 0.48 106 034

n,- 10, nr=10 0.89 097 0.67 0.58 0.99 0.26
ns —20, n,, —20 0.92 091 0.85 0.72 102 014
n,- 25, n =2 0.95 0.4 0.88 0.78 102 013
ns=30, nr=30 0.95 0.97 0.90 0.82 1.00 0.11

The second and the third columns of this Table enclose the probabilities
of the truthfulness of the null hypotheses in (2) and (4). The fourth column
contains the probability that the estimates of the logarithm of the relative
potency differ from the true value of the logarithm of the relative potency
less than by 0.2. The next column gives us the joint probability of the
conditions oi the three previous columns. In the last two columns we can
see the average estimate of ihe logarithm of the relative potency and
standard deviation ol all estimates obtained through the simulations. Table
1 shows that the estimates are eloser to the parameter when the number
ol dose replications is bigger. Regarding the probabilities of acceptance of
the null hypotheses about parallelism and the logarithm of the relative
potency we can notice that they arc high enough even for the small number
of dose replications. Looking at the last two columns, it is easy to conclude
that the estimates of the logarithm of the relative potency are better when
the number of dose replications is higher.

4. RESULTS FOR THE CONTAMINATED NORMAL DISTRIBUTED DATA

As we mentioned, in practice, however, the assumption about the
normality of responses is not necessarily fulfilled. It is worth checking out
whether the estimate of the relative potency differs from the true parameter
when some of the responses have another distribution. In this paper we
restrict our attention to the contaminated normal distribution. We concentrate
on the situation where most of the responses have the distribution described
in the model (1) but g percent of the data, chosen randomly, has the
normal distribution with intercepts shifted by the vector a and the covariance
matrix rl. Results for the different ¢ and r are enclosed in Tab. 2, 3,
4 and 5. The columns of the tables arc constructed as in Tab. 1



Table 2

I'he estimates of the logarithm of the relative potency and probabilities of testing hypotheses
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Table 3

The estimates of the logarithm of the relative potency and probabilities of testing hypotheses
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Table 4

The estimates of the logarithm of the relative potency and probabilities of acceptance of the
hypotheses with r = 2.0
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0.33
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0.25
0.35
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0.56
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1.40
119
1.10
1.04
1.04
1.00

0.80
116
1.26
1.05
1.02
1.01

1.12
1.86
119
111
1.07
1.03

-5.53
1.30
117
1.10
1.02
1.04

-0.24
1.32
113
1.07
1.08
0.24

157
0.59
0.39
0.24
0.21
0.16

6.73
0.56
137
0.25
0.32
0.23

1.39
6.15
0.68
0.35
0.37
0.19

65.95
2.07
0.74
0.36
0.29
0.21

16.18
119
0.57
0.27
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Table 5

The estimates of the logarithm of the relative potency and probabilities of acceptance of the
hypotheses with r = 10.0

4 wx onr 0 net Uy He ) i—2L <02 1alinH fl
5 5 0.95 0.95 0.36 0.34 0.63 6.79
5 10 0.90 0.94 0.43 0.39 1.28 0.83
0.1 10 10 0.95 0.91 0.48 0.43 1.15 0.54
20 20 0.94 0.95 0.61 0.56 1.08 0.37
25 25 0.93 0.96 0.67 0.59 1.04 0.23
30 30 0.92 0.93 0.75 0.66 1.00 0.18
5 5 0.93 0.95 0.33 0.28 271 8.99
5 10 0.93 0.94 0.31 0.27 1.30 1.21
0.2 10 10 0.93 0.96 0.37 0.28 0.87 3.68
20 20 0.98 0.95 0.56 0.51 1.09 0.48
25 25 0.99 0.88 0.55 0.48 1.04 0.50
30 30 0.92 0.94 0.64 0.56 1.02 0.30
5 5 0.95 0.94 0.35 0.31 2.06 5.14
5 10 0.94 0.95 0.30 0.26 0.69 4.86
0.3 10 10 0.91 0.91 0.32 0.28 1.04 1.77
20 20 0.96 0.98 0.47 0.43 1.50 3.77
25 25 0.93 0.99 0.50 0.44 1.16 0.70
30 30 0.93 0.92 0.60 0.52 1.04 0.27
5 5 0.86 0.97 0.25 0.19 147 2.70
5 10 0.92 0.96 0.28 0.26 1.26 1.99
0.4 10 10 0.94 0.97 0.38 0.34 1.63 6.97
20 20 0.99 0.95 0.41 0.39 124 0.83
25 25 0.92 0.92 0.47 0.38 1.10 0.49
30 30 0.87 0.91 0.60 0.48 1.06 0.32
5 5 0.93 0.95 0.22 0.22 1.28 3.98
5 10 0.90 0.96 0.26 0.22 4.82 18.59
0.5 10 10 0.92 0.96 0.23 0.20 1.05 2.59
20 20 0.98 0.95 0.49 0.36 1.14 0.50
25 25 0.96 0.95 0.36 0.33 1.17 0.63
30 30 0.92 0.93 0.44 0.42 1.05 0.35

The outcomes for ten percent of contamination, enclosed in Tab. 2, 3,
4 and 5 concerning the joint probability of the truthfulness of the hypotheses
Hp and H° and that the condition —[| < 0.2 is satisfied (seventh
column) are illustrated on Fig. 1. From this figure we conclude that the
joint probability depends heavily on the dose replications but is almost the
same for the different multiplier r of the covariance matrix. By analogy,
on Fig. 2 the estimates of the logarithm of the relative potency is plotted.
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Fig. 1 Joint probability of the truthfulness of H° and H° and |/i —i\ <0.2
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Regarding the percent q of contaminated responses equals 10, 20, 30,
40 and 50 per cent, the joint probability is plotted in Fig. 3. This figure
shows, that the joint probabilities decrease a little bit where the percents
of contaminated responses increase. This probability depends most on the
dose replications for each g similarly as in Fig. 1. The estimates of the
logarithm of the relative potency obtained for the different r and q enclosed
in the penultimate column in Tab. 2, 3, 4 and 5 are illustrated in Fig. 4.

Fig. 4 shows that the estimates are very far from the true value only
for the lowest number of dose replications but for the dose replications
greater or equal to 10, the estimates of the logarithm of the relative potency
are very close to the real value of the parameter. The estimates do not
depend too much on the value of r, the multiplier of the covariance matrix,
and the proportion g of the contaminated data.

joint prob.
0.8
0.7
0.6
0.5-

0.3
0.2

0.1

Fig. 3. Joint probability of the truthfulness of 11° and H° and \p —£1<0.2 for q= 0.1, 0.2,
0.3, 0.4 and 0.5



Estimate

Fig. 4. The estimates of the logarithm of the relative potency for r= 0.5, 15, 2.0, 10 and
q=20.1, 0.2, 0.3, 0.4 and 0.5

5. CONCLUSIONS

Using the results presented in Section 3 and 4 we can conclude that
the number of dose replications has the greatest influence on the logarithm
of the relative potency. In particular, in the cases where responses do not
have to be normally distributed, the experimenters should remember about
it. With only a few dose replications, the estimates are far from the true
value of the parameter, and standard deviations of the estimates are big,
so with the same problem one could obtain the estimates which would
differ a lot one from another. As far as the contaminated normal distribution
is regarded, Tab. 2, 3, 4, 5 as well as Fig. 1, 2, 3 and 4 show that the
multiplier of the covariance matrix has a very small influence on the
estimator of the logarithm of the relative potency. The percent of the
contaminated data sets influences the estimates but not in an essential way.
Summarizing, the experiments where doses of the preparations are applied
to many units, give a good estimate of the relative potency, even when the
responses are not exactly of the normal distribution.
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