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Abstract. The aim of this paper is to present a concept of a duality theory for 
dynamic production processes with constraints i.e. production processes described by 
nonconvex dynamical mathematical models (models depending on time).

1. INTRODUCTION

I he production function plays the crucial role in economics. Enterprises 
aim to minimize their costs (for a given level o f production), but the m ain 
m otivation o f their action is to maximize the profits. An analysis o f  the 
cost production is very often led by the production function. In static 
economy, if we are going to  analyse costs through a production function 
and prices then a duality theorem  is especially useful (see e.g. L e i d l e r ,  
E s t r i n, 1989). The essence o f  duality theory is that all elements o f  the 
production technology (available for enterprises) which are im portan t for 
economists can be simply placed in the cost function. This statem ent has 
im portan t consequences for the choice o f the quantity  o f expenditure and 
the level o f production. F o r example, optim al quantity  o f production 
factors we can gain directly from the cost function. Em pirical investigations 
also acknowledge a great interest in the study o f duality theories, for 
instance: very often it is difficult to collect credible inform ation concerning 
the production  factors (capital, labour). All available d a ta  concerning the 
labour expenditure take into account the num ber o f the workers, but they 
do  not take into account their qualifications and their intensity o f  work. 
Such problem s are m uch m ore serious in the case o f capital. A capital 
value is difficult to  be m easured and inform ation concerning usefulness o f
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the capital is almost unavailable. The enterprises have m uch m ore inform ation 
abou t their costs. The duality theory allows us to  infer properties o f the 
production  function from the cost function, where the inform ation  is 
available, m ore readable and reliable. A bout the relation o f the costs with 
production we can think in two ways: 1) we find maximized level o f 
production, when the cost production is constant, 2) we find minimized 
level o f the cost, when the production is constant. In each case we have 
the same result. The analysed cost function has a dual form with relation 
to the production function. O f course, such a duality theorem  exists, up 
to  now, but only for production processes described by static (linear or 
convex) m athem atical models i.e. models which do not depend on time.

T he aim o f this note is to  present a concept o f  a duality theory for 
dynam ic production processes i.e. production processes described by non- 
convex dynam ical m athem atical m odels (models depending on time). In that 
dual model the constraints appear, which cannot be taken into account in 
prim al model. Such constraints appear every time in each production 
process. The com panies which are interested in their own profits know, 
th a t they do no t possess inexhaustible resources and that they do not have 
endless and unlimited funds. Their scale o f production is constrained, like 
all their possibilities.

2. DUAL APPROACH 

Let us consider the cost functional:

T

J(x,  u) =  j L ( t 9 x)(t),  u(t))dt + l (x (T) )  (1)
0

depending on the state x(t)  and control u(t) which m easure the level of 
a cost o f  a production or a quantity  of the production (depending on the 
way we think about the relations between the cost and the production). 
The state x(i) denotes the expenditure of an  enterprise depending on time
i.e. they m ay change with time. We adm it a possibility to  control by u(t) 
the types o f transitions of x(£) in time. It is natural to require, tha t state 
x(i) varies dynamically, i.e. tha t x(t)  and u(t) are subject to  some differential 
equation:

* 0 ) = /(*» x(t) ,  u(t)) a.e. in [0, T]  (2)

where / :[0, T] x  R" x  R m—* R n is to  m easure the speeds o f changes o f the 
expenditure x(f) in time. We assume that / ,  L :[0 , T] x  R n x  R m—+ R  and 
l : R n—* R  are continuous function and the controls u :[0 , T ] —* U  c  R m are



m easurable functions, re [0 , 7]. We shall also assum e tha t the expenditure at 
time t =  0 has a given value с i.e.

x(0) =  c, c e R n (3)

M oreover, we shall adm it tha t the expenditure x(r) is also subject to  some 
constraints:

g ( x ( ) )  =  0 (4)

where g : R n—*Rk. A pair x(t),  u(t) satisfying the constraints (2), (4) will 
be called admissible and corresponding x( t)  an admissible state o r an 
admissible trajectory, see ( F l e m i n g ,  R i s h e l ,  1975).

O ur goal is to  minimize the functional (1) in the space o f absolutely 
continuous states x(i) and m easurable controls u(t) subject to the constraints 
(2), (3), (4).

The classical m ethod to  study such problems is to  define in some open 
set G<=R" + 1 o f the variables (t, x) ,  the value function o f our problem . 
T he value function S(t, x )  in the classical approach is defined as follows:

S(t, x )  =  i n f | jL ( r ,  x(x), u(z))dx +  /(x(T)) j,

where the inferior is taken over all pairs x ( t ) ,  u ( t ) ,  т е [£ , Г ], whose states 
start at the point (t, x ) e G  and their graphs are contained in G. The next 
step is the following: if S(t, x)  is continuously differentiable then it m ust 
satisfy the partial differential equation o f  Hamilton-Jacoby-Bellman type:

S,(t, x)  +  H(t,  x,  Sx(t, x)) = 0 (t, x) e  G,

where H(t,  x, y) =  yf(t ,  x,  u(t, x)) -  y°L( t ,  x ,  u(t, x)),  y, y° are m ultipliers and 
u(t, x )  is an optim al control. T he value function satisfies also the partial 
differential equation o f  dynamic programming:

inf{S,(i, x) -1- S x(t, x)f( t ,  x, u) -  y°L ( t ,  x, u ) : u e  U} =  0.

This approach has m any disadvantages. F irst of all, it is a very rare 
case that the value function is continuously differentiable in some open set 
G when the constraints (especially state constraints) are included in op 
tim ization problems. The second is that there is no suitable duality  theory 
for production analysis with the above approach. In fact that approach 
cannot be in general applied to the problem  (1), (2), (4) just because o f (4).



A non-classical m ethod to study the problem (1), (2), (4) by dynam i
cal approach is to  carry out all explorations concerning dynam ic p ro 
gram m ing from the (t, x) -  space to the space o f m ultipliers ( ( t , y ° , y )
-  space). Let us explain it briefly. Let be given an open set P c j ?"+2 of 
the dual space o f the variables (t, y°, y) =  (í, p), y°  0 and a function 
x( t , p) ,  defined in P, x ( t , p ): P cz R n + 2- * R n, such that x ( - , p )  satisfies (4) 
for each p, such that (t , p ) e P . Then in the set P we define a dual value 
function'.

T> x ( t ) ,  u (i))á t — y° l (x (T ))  j  (5)

where the inferior is taken over all pairs x ( t ) ,  u ( r ) ,  t e [ i ,  7], whose states 
start at (t, x(t,  p)) and their graphs are contained in the set o f values of 
the m apping (t, p ) —*(t, x(t,  p)), (t , p ) e P . Next we define a new function:

V(t> P) =  -  s b0> P) -  x(i, p)y,

abou t which we assume that it is subject to satisfy the condition:

V(t, p) =  Vy° (Г, p)y°  +  Vy(t, p)y = Vp(t, p)p (6)

where: -  SD(t, p) = Vy°(t, p)y° , -  x(i, p) =  Vy(t, p), (t , p ) e P .
We shall require that V[t,p) satisfies the dual partial differential equation 
o f  Hamilton-Jacoby-Bellman type'.

V,(t, p) +  H(t,  -  Vy(t, p) ,p)  =  0, (t, p ) e P  (7)

and the state constraint:

9( - vy ( ' , p )  =  0,

w here H(t ,  x,  p) =  yf ( t ,  x , u ( t ,  p)) +  y°L ( t ,  x , u ( t ,  p)), y, y°  are m ultipliers 
and u(t, p) is a dual optimal control. The function V(t, p) m ust satisfy also 
the dual partial differential equation o f  dynamic programming-.

sup{K/£, p) +  yf(t ,  -  Vy(t, p), u) +  y°L(t,  -  Vy(t, p),u) : u e U } = 0  (8) 

and the state constraint:

S|>(i-P) =  i nf ]  - y ° $ L (

e ( - v y( - , p )  =  0 (9)



The non-classical approach has several advantages. N ow  we need not 
require that the set G has a nonem pty interior. We do not require the 
value function S(t, x)  to be differentiable in G. T he state constra in ts are 
in a natural way included in the dynam ic program m ing equation. T he m ost 
im portant advantage is that we have a duality theory which associates the 
value functions: prim al and dual.

3. A VERIFICATION THEOREM

In this section we will give the m ain theorem abou t the dual sufficient 
conditions o f  optimality.

Let G c ü " +1 denote a set covered by the graphs o f all adm issible 
trajectories.

Let P t = i ?" +2 be a set o f variables (i, p), te [0 , T],  with y ° ^ 0  and have 
a nonem pty interior. T ake a function x ( t , p )  defined in P  such th a t 
( t , x ( t , p ) ) e G ,  (t , p ) e P  and g ( x ( , p ) )  =  0.

Let the function x(t, p) satisfy the following assum ptions:
1) for each admissible trajectory x(t)  lying in G there exists an  absolutely 

continuous function p(t) =  (y°, y(t)), lymg in P such that: x(t) =  x(t,  p(t)),
2) if all trajectories x(t)  start a t the same (t0, x 0), then all the corres

ponding them trajectories p(t) have the same first coordinate y°.
Let SD(t, p) be as in (5). We see that:

S „ ( t , p ) =  -  y°S(t,  x(r, p)), (t, p) e  P.

Now we will give the proposition, which will be used in the p ro o f o f 
the m ain theorem  o f this section.

Theorem 1. Let W(t ,p)=* — y°Z( t ,  x(t, p)) be a real-valued function in 
P such that W ( T , p ) — — y°l(x(T, p)). Let (£0, x 0) e G  be given initial condition. 
Suppose tha t for each absolutely continuous function p (i) =  (y°, y(t)),  
t e [ i 0,T ] ,  with graph lying in P,  the function x(i) =  x(t,  p(t)),  i e [ i 0, T],  
x ( t0) = x 0, is an admissible trajectory lying in G and that:

W ( t , p(t)) +  y °}L (t, x ( t ) ,  u(x))dz 
t

is non-decreasing on [t0, Т].  If  p( t )  = ( y ° , y ( t ) ,  t e [ t 0, T ]  is absolutely 
continuous function and if x ( t )  = x( t , p ( t ) ) ,  t e [ t 0, T ] ,  x ( t 0) =  x 0 is an 
adm issible trajectory in G and is such that:



W  (r, p  (i)) +  y°JL  ( t ,  x ( t ) ,  u  (x))dx 
(

is co n s tan t in [t0, T],  then x ( t )  is an optim al tra jec to ry  and 
W (t0, p(to))  =  SD(t0, p ( t 0)), where u ( t ) is an optim al control corresponding 
to  x( t ) .

P roof. F o r any function  p(t),  £б[£0, T ] described above:
T

- y ° Z ( t 0, x 0) ^  -  у ° \ Ц х , х ( х ) ,  u ( x ) ) d x - y ° l ( x ( T ) ) ,  where u(t) is a control
to _

feasible for x(t).  F o r the function p(t):

-  y ° Z ( t 0, x 0) =  - 7  0J L(z ,  x(x), v(x))dx -  J  ° № T ) )
to

so W{to>p0 o)) =  SD(t0,p( t0)) and x( t) ,  u(t)  is an optimal pair for the problem 

г
i n f { - y 0jL ( t ,  x ( T ) u ( r ) ) d r - y  ° l (x(T)) :  x(t),  u(t),  t e [ i 0,T ] ,  are admissible 

(

pairs with x(£0) =  x 0 and x( t ) lying in G}.

Now we will formulate the main theorem (sufficient optimality conditions) 
which is a coun terpart for the dual version of the verification theorem  from 
( F l e m i n g ,  R i s h e l ,  1975, Theorem  4.4, p. 87).

Theorem 2. Let V(t ,p) ,  ( t , p ) e P ,  te [0 , T], be a continuously differentiable 
solution o f (8), (9) with the boundary condition: y°Vy0(T ,p ) =  y ° l ( -  Vy(T,p)),  
(T, p)P,  and satisfying the relation:

V ( t , P) =  Vp(t ,p)p,  ( t , p ) e P  (10)

Let x( t ), u(t) be an admissible pair whose graph o f the trajectory
x(t)  is contained in G =  {(I, x ) : x =  - V y(t ,p) ,  (t , p ) e P } and such that
there exists an absolutely continuous function p(t) lying in P and satis
fying:

x ( t ) =  - V y(t ,p(t ))  (11)

Then:

W ( t , p ( t ) ) =  -  y°Vy0(t ,p(t ))  + y ° \ L ( r , x ( t ) ,  u(x))dx (12)
Г

is a non-decreasing function of t.



Let now T(t ) ,  tf(t),  te [0 , Г ], 7 (0 ) =  с be an admissible pair with Y(t )  
lying in G and let p(t),  te [0 , T],  be a nonzero absolutely continuous 
function lying in P such that: Y(C) =  — Vy(t ,p ( t ) ) ,  te [0 , Т].  Let for all 
r e  [0 ,7 ]:

v , ( t , m ) +y a m .  -  щ  m ,  ш + y ° w . -  w ш ,  m ) = о аз)
Then x ( t) , ü( t ) ,  te [0 , T ] is an optimal pair for the problem  (1), (2), (4) 
relative to all admissible pairs x(í), i/(t), ŕ e  [0, T],  x(0) =  с whose graphs of 
trajectories x(t) are contained in G .

M oreover: SD( t , p ( t ) ) =  -  J ° S ( t , x ( t , p ( t ) ) ) =  - y 0Vy0( t , j r ( t ) )  w ith 
x(l, p) — - V y(t, p) is the dual value function along p{t).

Proof. Let us differentiate both sides o f (10) with respect to  t along p(t):

V,(t, p(t)) = y°(d/dt)Vy„(t, К О ) +  y(t)(d/dt)Vy(t, p(t)).

From  (2) and (11) we receive:

(d/dt)Vy( t , p ( t ) ) =  - / ( г ,  - V y(t ,p(t)) ,  u(t)),

and from ( 12) we have:

(d/dt )y°V yo(t,p(t)) =  — (d /d t )W(t ,  p(t)) — y°L( t ,  - V y(t ,p(t )) ,  u(t)).

Hence and from (8) we obtain that (d /d t)W(t ,  p(t)) ^  0 for alm ost all 
ie [0 , Т]. The above relations written for p(t ),  together with equation  (13), 
imply that for all re [0 , T]:

- y ° V A t , m ) =  -  7  °ÍL(t, ЗГ(т), ü ( r ) ) d r - у ° К - V , ( Т ,  п т ))).
r

Hence we get that W{t ,  p( t ) )  =  —y ° l ( x ( T ) )  for all te [0 , Г ], i.e.
W (t ,  p( t ) )  is a constant function. This together with Theorem  1 implies 

the assertions o f the theorem.

Rem ark 1. Solving (8), (9) we obtain m uch m ore inform ation abou t our 
problem  than  in the classical dynam ic program ming. T he function: — Vy(t, p ) 
defines the whole space o f admissible states where our problem m athematically 
m akes sense. T he condition (10) extrem ely im portan t in physics and 
m athem atics, in economy was not included into consideration up  to  now. 
It shows the real production costs, dynam ically changing in time, no t only 
those which are placed into the cost functional. This condition tells us tha t 
the m ultipliers (y°, -  y)  arc orthogonal to the epigraph o f the m inimized 
cost functional S(t,  x) at. the point (x(t, p), S(t, x(, p))). It m ay be interpreted 
economically as follows: m ultiplier y, which is equal to: — S x(t, x(r, p))



(when S(t, x )  is differentiable with respect to x) equals the m arginal cost 
in time t (or m arginal product) (com pare ( L c i d l e r ,  E s t r i n ,  1989) in 
the static case).

In order to  understand what the new function V ( t , p )  m eans let us 
com e back to  the static problem  o f production analysis. Then the cost 
functional ( 1) reduces to  the function l(x), we have not dynam ical equations 
(2) but we have constraint (4). Usually to  m ake an analysis o f  production 
through the costs and the level o f  production the Lagrange function is formed:

and then suitable calculations on this function are m ade. O ur new function 
for this simple case has the form:

where p = (y °, у ) and x(p)  is a param etric description o f the constrain t (4 ), 
but the param eter is just the m ultiplier p. In fact (15) is a dual functional 
exactly in the same sense as it is in linear program m ing problem s (see 
A u b i n ,  (1979, 1997), S c h i l l e r  (1989)).

Usually in duality  theories m ultiplier у  m eans the prices o f som e 
quantity  x.  Because у  =  ( y l , y"), so the dual variable y*(i =  1, n) 
denotes (according to neoclassical theory of economy) the marginal productivity 
o f  the i-th resource of production. In (15) у  can be interpreted as a price 
o f the quantity  x(p),  like for example in L e i d l e r ,  E s t r i n  (1989). T hat 
is why: — V (p) is just a full cost o f  the whole production process. We 
observe that studying (14) we cannot derive this type o f duality results (see 
L e i d l e r ,  E s t r i n  (1989)).

3.1. Conclusions

b (x , у) = К*) +  yg(x) (14)

V (P) =  y°Kx(p))  -  yx(p) (15)

4. EXAMPLE

Let us consider the problem  o f minimizing the cost functional:

n
J(x,  u) =  (1/2)J( -  x 2(t) +  u2(t))dt  +  / ( jc( tc) ) (16)



where:

l(x)n))  =
0, if x(n)  =  0,
-boo on the contrary,

(17)

but we assume, that expenditure o f an enterprise changes in time and 
we adm it a control o f them. Expenditure is described by the following 
dynamic:

T he constraints (21) are defined as follows:
Let g be an indicator function o f the set D, i.e. it equals zero on the 

set D and equals one out o f D (on the plane R 2), where the set

It m eans that if the graph of x(t),  ie[0,rc] lies in D, then g(x( )) =  0.
I he condition  (17) m eans th a t all adm issible trajectories (for our 

problem ) m ust be in the point я  equal zero.
T o find an optim al control we can use Pontryagin’s M axim um  Principle 

(necessary optim ality conditions) for a problem  (16)-(20) -  com pare ( F l e 
m i n g ,  R i s h e l ,  1975) -  we can also simply guess a certain family o f the 
trajectories, which we “suspect” o f the extreme, which is dependent on 
changing initial conditions.

So, we receive the following functions: x(t),  u(t), p(t) =  (y°,y(t))
1) x(t, Cj) =  Cjsint, u(t, C |) =  CjCosf, y°  =  — e, y(t,  ec j)  =  eCjCOSi,

x(t) =  B(t)u(t) a.e. in [0, л] (18)

where:
for ie [0 , 7t], 
for t =  0 ,

u( t )e [  0, 1], t e  [0, n] (19)

x(0) =  с (20)

g(x(  •)) =  0 (21)

where

2) x(t, e) =  0 , u(t, e) =  0, y ° =  -  e, y(t,  e) =  0,

where



Because our trajectories m ust satisfy constraints (21) so, the above (unctions 
x (i), u(t), p(t) reduce to:

1) x(t,  Cj) =  c j siní, u(t, Cj) =  cycost,  y° =  -  e, y(t,  e c ,)  =  e rb o s t ,

where í e ^ C j ) ,  л], c xe ( — 1 , 1), » - \

where t(c ,)  is a solution of equation c ,  siní =  í2 with respect to  í in [0 , 7t] 
depending on c ,;

2 ) x(i, e) =  0 , u(l, e) =  0, y° = -  e, y(t, e) =  0,

where t e [ 0, я], е е

We can easily check tha t the trajectories:
1) x(i, c t ) =  c tsini, where t e [t(ct ), к], c , e (  — 1 , 1),

2 ) x(t, e )  =  0 , where í g [ 0, л] ,  е е

satisfy constraints (2 1 ).
Let us define a control (taking into account above functions):

f - y / y ° ) ,  if t e [ 0,n], |y |< ^ |c o s t | ,

u(t, У0, У) =  J /  3 1\  У (22)
0 , if t e [ 0 ,rt], y ° Gí - - . - - J ,  у =  0.

Now we will define x ( t , y ° , y )  and V(t,  y ° , y )  in the same set o f  variables 
t and (y°, y) respectively as:

Х (£ ,У °,У ) =  j ^ /y°)tg i’ (23)

V ( t , y ° , y )  = i ^ 2l2y0)tgt’ (24)

Substituting x ( t , y ° , y )  and K(£,y°, >;) to  the assertions o f  the Theorem
2 we see that V(t ,  y°, y)  defined by (24) and Vy (£, y°, y) = - x ( t , y ° , y )  
defined by (23) satisfy these assertions, and also these assertions arc 
satisfied by the pair x(t) =  0, u(t) = 0. So, from the Theorem  2, this pair 
is optim al.

The above statem ent denotes that, if expenditure starts from  the value 
zero and after tim e m ust be also equal zero in the problem  (16)—(21), so 
they m ust be all the time equal zero, w ithout action o f a control i.e. 
a control m ust be equal zero. Intuitively this fact is obvious, but this 
example proves that m athem atically there is no other possibility.
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