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O N  UNCERTAIN TY CLA SSES AND M IN IM AX  E ST IM A T IO N  IN T H E  
L IN EA R  R E G R E SS IO N  M O D E L S  W IT H  H E T E R O S C E D A S T IC IT Y  

AND CO R RELA TED  E R R O R S1

Abstract. The problem of minimax estimation in the linear regression model is 
considered under the assumption that a prior information about the regression parameter 
and the covariance matrix of random component (error) is available for the decision-maker. 
Two models of the uncertainty of the prior knowledge (so called uncertainly classes) are 
proposed. The first one may represent the problem of estimation for heteroscedastic 
model, the other may reflect the uncertainty connected with the presence of the 
correlation among errors. Minimax estimators for considered classes are obtained. Some 
numerical examples are discussed as well.

L INTRODUCTION

Let us consider the ordinary linear regression model

Y =  X/f +  Z  (1)

where Y is an n-dimensional vector o f observations o f  the dependent 
variable, X is a given nonstochastic (n x  к) m atrix  with the rank  k , ß  is 
a /с-dimensional vector o f unknow n regression coefficients, Z  is an  n- 
-dimensional vector o f random  errors (random  com ponents o f the m odel). 
We assume E(Y) =  X ß  and cov (Y) =  E.

Various papers deal with the problem  o f the regression estim ation in 
the presence o f prior knowledge about the param eter ß . Some o f them 
study the problem s where the prior inform ation is of the form o f a restricted
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param eter space (see e.g.: D r y  g a s ,  1996; D r y g a s ,  P i l z ,  1996; G i r  к о ,  
1996; H o f f m a n ,  1996; P i l z ,  1996). O ther papers arc devoted to  the 
problems where the prior inform ation is expressed in terms o f the probability 
distribution o f the param eter ß. In such a case the distribution o f the 
param eter is often assumed to belong to a given class o f distributions, (see: 
B e r g e r ,  1982; B e r g e r ,  C h e n ,  1987; B e r g e r ,  1990; G r z y b o w s k i ,  
1997; V e r d u ,  P o o r ,  1984). This class models the prior knowledge as well 
as its uncertainty, so we call it an uncertainty class, see V e r d u ,  P o o r  
(1984). Sometimes this approach leads to game theoretic form ulation o f the 
original decision problem (see: V e r d u ,  P o o r ,  1984; G r z y b o w s k i ,  
1997). In this paper we adopt the latter approach. We introduce two 
uncertainty classes reflecting the uncertainty in two com m on situations. 
Section 3 is concerned with the regression estim ation in heteroscedastic 
m odels. Section 4 deals with the problems associated with the presence of 
correlation between errors. In each case we solve the game connected with 
the introduced uncertainty class, i.e. we find m inim ax estim ators and the 
least favourable states o f nature. Some numerical examples are also presented 
to  illustrate im portant features o f the obtained solutions.

2. PRELIMINARY DEFINITIONS AND NOTATION

Let L (. , .) be a quadratic loss function, i.e. L(ß , a) = (ß — a)TH (ß  — a), 
for a given nonnegative definite (k x k) m atrix II. F o r a given estim ator 
d the risk function R ( .  , .) is defined by R (ß, d) =  EpL(ß ,  d(Y)). Let the 
param eter ß  have a distribution n. The Bayes risk r(. , .) connected with 
the estim ator d is defined as usual: r(n, d) =  EnR(Jl, d). Let D denote the 
set o f all allowable for the decision m aker estim ators. We assum e tha t all 
o f  them have the Bayes risk finite. The estim ator d* e l )  which satisfies the 
condition

r(n,  d#) =  inf r(n, d)
deD

is called a Bayes estimator (with respect to n).
Let us consider a game ( Г ,  D, r ) ,  where Г  is a given class o f  

distributions o f the param eter ß. Any distribution n* e  I \  satisfying the 
condition

inf г(я*, d) =  sup inf r (it, d)
del) леГ deD

is called the least favourable distribution (state o f nature). T he minimax  
estimator is defined as the estim ator d * e l)  which satisfies the following 
condition:



sup r(n ,  (1*) =  inf sup r(n,  d).
IT e r  de l) пеГ

Sometimes the robustness o f estim ators is described in term s o f the 
supremum  o f the Bayes risks, see e.g. B e r g e r  (1982, 1990), V e r d u ,  P o o r  
(1984). 'I hen the above estim ator is called minimax-robust.

Various problems o f m inim ax-robust regression were discussed e.g. in 
B e r g e r  (1982, 1990), B e r g e r ,  C h e n  (1987), C h a t u r v e d i ,  S r i v a s -  
t a w a  (1992), G r z y b o w s k i  (1997), P i n e l i s  (1991). The relations 
between Bayesian analysis and m inim ax estim ation were exam ined in 
B e r g e r ,  C h e n  (1987), D r y  g a s ,  P i l z  (1996), H o f f m a n  (1996), P i l z  
(1986). Review o f  recent results on robust Bayesian analysis and interesting 
references can be found in M ę c z a r s k i  (1998). Various classes o f  stable 
(robust, m inim ax and other) estim ators are also discussed in M i l o  (1995).

Let us consider the case where our inform ation abou t the param eter ß  is 
described with the help o f the following class r SiK o f distributions л:

r SiK =  {n: E J i  =  9, cov (//) =  A e  K  c  M*},

where К  is a given subset o f a space M k o f all positive definite (k  x  k)  
m atrices. I he point 9, fixed throughout this paper, can be thought o f  as 
a prior guess for //, while the set К  reflects our uncertainty connected with 
the guess. Let us assume the covariance m atrix E o f the random  disturbance 
Z  belongs to  a given subset Q o f  the space M„. Problem s o f m inimax 
regression estim ation in the presence o f such a prior inform ation abou t 
E were considered in G r z y b o w s k i  (1997), H o f f m a n  (1996), P i n e l i s  
(1991). The set G = K  x Í2 is the uncertainty class in our problem .

Let us consider the situation when the set o f  allowable estim ators 
L consists o f all affine linear estim ators d, i.e. estim ators having the form 
d(Y) =  AY +  B, with Л and В being a matrix and a vector o f the appropriate 
dim ensions. T he original problem  o f  estim ation o f the param eter ß  now 
can be treated as a game <G’, L, r ) .  The solution o f the game was found 
in G r z y b o w s k i  (1997). It was proved that if the uncertainty class G is 
convex then any afTinc linear estim ator d* which is Bayes with respect to 
the least favourable pair oj matrices is m inim ax-robust (note tha t the Bayes 
risk for affine linear estim ators is determ ined by the first two m om ents o f 
the prior distribution). The least favourable m atrices A* and E* satisfy the 
condition:

tr(C(A*, E*)H =  sup tr(C(A, E)H ) (2)
(A, L)eG

where C(A, E) =  ( X ' E ~ LX -f A - *)” while the estim ator d* is given by the 
following familiar formula:



d*(A*, £*) =  C(A*, Z*)Xr (E*)_ łY +  С(АФ, (3)

Last year, during M SA’97, we examined an uncertainty class with the 
sets К  and Q  defined as follows: K  = {A: A = d lk, d e ( 0, d0]}, Í2 =  {E: 
E =  sln, s e  (0, s0]}, with given real values d0, s0 and I*, I„ being the identity 
m atrices in the spaces M k and M n, respectively, sec G r z y b o w s k i  (1997), 
H o f f m a n  (1996), P i n e l i s  (1991). Practically, the class m ay represent 
the case where the uncertainties connected with each coefficient ßt arc 
independent and the same while the regression model satisfies two assumptions: 
homoscedasticity and independence o f  errors Z,.

In the sequel o f the paper we propose uncertainty classes representing 
the situation when the uncertainties connected with each coefficient of 
regression param eter ß  m ay be different and the above two assum ptions 
abou t the regression m odel m ay not be satisfied.

F o r convenience we adop t the following notation. F o r any n-dimcnsional 
vectors a, b we write a > b  if ai ^ h i , í =  1, n. We write a >  0 if all 
com ponents o f the vector a are positive. For any m atrix  A we write A >  0 
(A >  0) if the m atrix  is positive (nonnegative) definite. F o r any vector a the 
symbol diag(a) stands for a diagonal m atrix with the com ponents o f a on 
the m ain diagonal.

3. MINIMAX ESTIMATION IN HETEROSCEDASTIC MODELS

Let S e R K and o e R "  be given vectors. Let G(ô, a) = K  x Í2 denote an 
uncertainty class where the sets К  and Ü  are defined as follows: К  =  {A e M k: 
A =  diag(d), 0 < d ^ < 5 } ,  Q =  { Z e M n: E =  diag(s), 0 < s < c r } .  T he class m ay 
represent the case where the uncertainty connected with coefficients ß. of 
the regression param eter are different and the random  erro rs Z i are 
independent but they m ay have different standard deviation. T he following 
proposition provides the m inim ax estim ators for such problem s.

Proposition 1. Let As =  diag(c5) and =  diag(<x). The estim ator d*(Ai;
given by (3) is the m inim ax estim ator for the game <G(<5, a), L, r. □

In view o f the above m entioned results, in order to prove the Proposition 
it is sufficient to  show that the tw o m atrices (A6, E J  satisfy the condition 
(2). F o r this purpose we need the following lemmas.

Lemma 1. Let A =  [fly]* „ * >  0 and H  =  [hu]k „ * >  0. Let A „  and H n  
be the subm atrices of A and H , respectively, obtained by deleting the first 
row  and the first column. Then

t r í A ^ H J - t r í A f ^ H n ^ O  (4)

P ro o f o f Lem m a 1.



Let us write dow n the m atrix  A in the following form:

One can verify that

tr(A -  41) -  t r í A í / H n )  =  tr(M H ),

where

with с =  (flu  — wTA 111w)- 1 .
c- T . _ ,  det(A)
Since a u  — w А ц  w =  \  we see tha t c > 0 .

det(A u )
It appears th a t M > 0 .  Indeed, for an arbitrary ^-dim ensional vector 
x T = ( x l , x l ) ,  * 1  e R, x 2e R * -1 we have

x r M x =  c (x x -  b)2, with b = w tA i i1x 2.

Now, let e 7 =  (1, 1, 1) and let M * H  denote the H adam ard  product 
o f the m atrices M , H. Then tr(M H ) =  e r (M * H)e, see R a o  (1973). On the 
o ther hand, from the Schur lemma we know that ( M * H ) > 0  for any 
m atrices M > 0  and H  ^  0. It follows that e r (M * H )c ^  0 and the p ro o f is 
com pleted. □

Lemma 2. Let A > 0 ,  H ^ O  be given k x к m atrices. Let for i =  1, ..., 
к and x  >  0 functions f t be defined as follows: / ,(x )  =  tr(A " ‘H ), where

a ri. i , \ au +  -  for  j  =  l =  i
A* =  [ M tx t  with bjt =  i x

aJt otherwise.
Then for each i =  1, ..., к the fu n c tio n / ,  is non-decreasing.

P ro o f o f Lem m a 2.
W ithout loss o f  generality we m ay consider i =  1. A  little calculation shows 
tha t for each x >  0 the derivative o f f l does exist and

=  det(A n )det(A )[tr(A - lH)  -  t ^ A ^ H n ) ]
[det(Au ) + x d e t(A )]2



In view o f Lemma I and our assum ptions about the m atrices Л and B, 
the derivative is nonnegativc, which completes the proof. □

P roof o f the Proposition 1.
F or any A =  d ia g ^ , ,  d 2, ..., d*) and L =  diag(.st , s2, ..., s„), A > 0 ,  E >  0, 
let the function g(dlt ..., dk, s t , s j  be defined as follows: g(d t , dk, 
s u  ..., s„) =  T(A, I )  =

tr{[Xr d ia g (—, -)  X +  diag (J  , - ) ] ' 1 H  (5)
Sj Sn “ 1 & к

It is easy to check that the function g can also be expressed in the 
following way: g(dx, dk, su  ..., sn) =

tr[diag(dp dk)H\ -  tr[Xdiag(</j, dt )X r  +  d ia g (s1, s„)]_1N (6)

where M  =  X d iag (d 1, dk) H d iag (ť/j, dk) \ ' . N ote that M > 0 .
It can be seen from (5) that for each i =  1, к the function g as 
a function o f dt is o f the same form as the functions / ,  from  Lem m a 2. 
The relation (6) shows that g as a function o f s, has got the form: const

-  / j f 1 ). T hus, in view o f (5), (6) and Lem m a 2, the function g is
\ s i J

non-decreasing w.r.t. each variable d lt dk, s it ..., s„. It results tha t on 
the set {(d, s ) e R ‘ x R ':  0 < d ^ < 5 ,  0 < s ^ o - }  it achieves its m axim um  at the 
point (ô , и). Since the set is convex the condition (2) yields the desired 
result. □

One m ay notice that in the considered case the least favourable states 
o f nature (and associated with them  m inim ax estim ators) are intuitive -  the 
m atrices A s, £„ are connected with greatest values o f variances o f  the 
regression param eter and error, respectively. In the next section we discuss 
a problem  where there is no such “ predictable” value o f the least favourable 
state o f nature.

4. MINIMAX ESTIMATION IN SOME PROBLEMS CONNECTED WITH CORRELATION
BETWEEN ERRORS

рН-л
Let P (p) denote a m atrix with elements pu =  y—— 2, |/j | <  1. Such

m atrices appear in a natural way in the case where the dependence between 
errors can be described by the following first order au tocorrelation process:



where V =  (Kj, V2, Vn) is a random vector with E(V) =  0 and D 2(V) =  a>I„, 
0 < c o < c o .  It is well-known that then Cov(Z) =  a)P(p).

I'o r given constants < u > 0, — \ < . p l <.p2 <. \ let us consider an uncertainty 
class G(S, о), p u  p 2) = K  x  £2 with the set К  defined as previously while 
Í2 =  { £ e M , : I  =  E(w, a) =  w fa P ^ j)  +  (1 - a)P(/?2)], 0 <  w <  w, 0 <  ос <  1}.

The following proposition provides the m inim ax estim ators when the 
uncertainty class is G(<5, со, p , ,  p 2).

Proposition 2. There exists a num ber a oG[0> 1] such that the pair o f 
matrices As, E(ro, a 0) is the least favourable state of nature and the estim ator 
d*[A)> a o)] *s the m inim ax estim ator in the game <G(á, со, p u  p 2)t L ,r ) .
I he num ber a o e[0, 1] depends on the matrices X and H. □

Proposition 2 states that, as in the previous case, the least favourable 
m atrix  A is associated with the greatest variances o f /У,. On the o ther hand 
the proposition asserts that the least favourable value o f the param eter 
a depends on the m atrices X, H and, in that sense, the least favourable 
covariancc m atrix o f the vector Z  is “ unpredictable” .

I he p roo f oi Proposition  2 is based on Lemma 2 and will be om itted. 
In the sequel we present some numerical examples to  show how a 0 depends 
on the m atrix II determ ining the loss. The dependence yields tha t our 
solution does not have the feature: “m inim ax prediction” equals “ prediction 
based on m inim ax estim ate o f  the regression param eter” . T he solution of 
the problem s considered in the previous Section has got such a property.

In our examples we consider the m odel (1) with the following fixed 
values o f its characteristics:

к =  3, n ш 7, X =

5
10

- 5
5

-  15 
- 5  

. 10

10

5 
10 

15 
10 

15 
-  15

15
15

- 1 5
10

5
5

- 5

In all examples we consider the class G(<5, w, 0, 0.5) with fixed values 
<5 =  (10, ..., 10) and со = 10. This is because we already know  how the 
estim ators depend upon these values. T o  simplify the no tation  we write 
Tr(ot) instead o f tr{C[Ai; E(w, a)] H}.

Example 1. The classical problem of estim ation of the regression parameter.
In this example we consider the case where H  =  I, i.e. the classical 

problem  o f estim ation o f the param eter /?. F igure 1 shows the graph of 
the function Ir . We can see that it has got one m axim um .



Fig. 1. The function Tr for the problem of estimation of [i.

It can be num erically verified tha t the m axim um  is taken  on for 
<*max =  0,728304.

Example 2. The prediction of the dependent variable.
Now let us consider a problem  o f prediction o f the value o f the 

dependent variable Y when the independent variables take on the following 
values: =  1, x 2 =  5, x 3 =  9. The corresponding m atrix determ ining the

' l  5 9 '
loss function is of the following form: H  =  5 25 45 . T he graph o f the

9 45 81
function T r in this case is presented in Fig. 2. Num erical calculation shows 
th a t the only m axim um  of T r is achieved for amttx=  0,812536.

Fig. 2. The function Tr for the problem of prediction for x , =  1, x 2 -  5, x 3 =  9



The two above examples show that the least favourable value o f the 
param eter a (and the associated covariance m atrix  £ )  can hard ly  be 
considered as intuitive. T he value changes for different m atrices H . It seems 
tha t in such situations we have different m inimax estim ators for various 
purposes (such as the estim ation o f regression param eter, prediction for 
different values o f  independent variables etc.) even in the same m odel. So, 
in the case o f correlated errors one should be partiu larly  aw are o f the 
purpose o f  the m inim ax estim ation.
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