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ON UNCERTAINTY CLASSES AND MINIMAX ESTIMATION IN THE
LINEAR REGRESSION MODELS WITH HETEROSCEDASTICITY
AND CORRELATED ERRORSI1

Abstract. The problem of minimax estimation in the linear regression model is
considered under the assumption that a prior information about the regression parameter
and the covariance matrix of random component (error) is available for the decision-maker.
Two models of the uncertainty of the prior knowledge (so called uncertainly classes) are
proposed. The first one may represent the problem of estimation for heteroscedastic
model, the other may reflect the uncertainty connected with the presence of the
correlation among errors. Minimax estimators for considered classes are obtained. Some
numerical examples are discussed as well.

L INTRODUCTION

Let us consider the ordinary linear regression model
Y= Xlf+2Z (&8

where Y is an n-dimensional vector of observations of the dependent
variable, X is a given nonstochastic (n x k) matrix with the rank k, R is
a fc-dimensional vector of unknown regression coefficients, Z is an n-
-dimensional vector of random errors (random components of the model).
We assume E(Y) = XB and cov (Y) = E.

Various papers deal with the problem of the regression estimation in
the presence of prior knowledge about the parameter R. Some of them
study the problems where the prior information is of the form of a restricted
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parameter space (see e.g.: Dry gas, 1996; Drygas, Pilz, 1996; G ir ko,
1996; Hoffman, 1996; Pilz, 1996). Other papers arc devoted to the
problems where the prior information is expressed in terms of the probability
distribution of the parameter B. In such a case the distribution of the
parameter is often assumed to belong to a given class of distributions, (see:
Berger, 1982; Berger, Chen, 1987; Berger, 1990; Grzybowski,
1997; Verdu, Poor, 1984). This class models the prior knowledge as well
as its uncertainty, so we call it an uncertainty class, see Verdu, Poor
(1984). Sometimes this approach leads to game theoretic formulation of the
original decision problem (see: Verdu, Poor, 1984; Grzybowski,
1997). In this paper we adopt the latter approach. We introduce two
uncertainty classes reflecting the uncertainty in two common situations.
Section 3 is concerned with the regression estimation in heteroscedastic
models. Section 4 deals with the problems associated with the presence of
correlation between errors. In each case we solve the game connected with
the introduced uncertainty class, i.e. we find minimax estimators and the
least favourable states of nature. Some numerical examples are also presented
to illustrate important features of the obtained solutions.

2. PRELIMINARY DEFINITIONS AND NOTATION

Let L(. ,.) be a quadratic loss function, i.e. L(B, a) = (B —a)TH (R —a),
for a given nonnegative definite (k x k) matrix Il. For a given estimator
d the risk function R(. ,.) is defined by R (B, d) = EpL(B, d(Y)). Let the
parameter B have a distribution n. The Bayes risk r(. ,.) connected with
the estimator d is defined as usual: r(n, d) = EnR(JI, d). Let D denote the
set of all allowable for the decision maker estimators. We assume that all
of them have the Bayes risk finite. The estimator d* el) which satisfies the
condition

r(n, d#) = inf r(n, d)
deD
is called a Bayes estimator (with respect to n).
Let us consider a game (I, D, r), where I is a given class of
distributions of the parameter B. Any distribution n*e I\ satisfying the
condition

infr(a*, d) = sup infr(it, d)

del) nel” deD
is called the least favourable distribution (state of nature). The minimax
estimator is defined as the estimator d*el) which satisfies the following
condition:



sup r(n, (* = inf sup r(n, d).
Mer del) nel

Sometimes the robustness of estimators is described in terms of the
supremum of the Bayes risks, see e.g. Berger (1982, 1990), Verdu, Poor
(1984). 'l hen the above estimator is called minimax-robust.

Various problems of minimax-robust regression were discussed e.g. in
Berger (1982, 1990), Berger, Chen (1987), Chaturvedi, Srivas-
tawa (1992), Grzybowski (1997), Pinelis (1991). The relations
between Bayesian analysis and minimax estimation were examined in
Berger, Chen (1987), Dry gas, Pilz (1996), Hoffman (1996), Pilz
(1986). Review of recent results on robust Bayesian analysis and interesting
references can be found in Meczarski (1998). Various classes of stable
(robust, minimax and other) estimators are also discussed in Milo (1995).

Let us consider the case where our information about the parameter B is
described with the help of the following class r SK of distributions n:

rSK= {n:EJi =9, cov(//) = AeK ¢c M*},

where K is a given subset of a space Mk of all positive definite (k x k)
matrices. lhe point 9, fixed throughout this paper, can be thought of as
a prior guess for //, while the set K reflects our uncertainty connected with
the guess. Let us assume the covariance matrix E of the random disturbance
Z belongs to a given subset Q of the space M,. Problems of minimax
regression estimation in the presence of such a prior information about
E were considered in Grzybowski (1997), Hoffman (1996), Pinelis
(1991). The set G = K x I2 is the uncertainty class in our problem.

Let us consider the situation when the set of allowable estimators
L consists of all affine linear estimators d, i.e. estimators having the form
d(Y) = AY + B, with /1 and B being a matrix and a vector of the appropriate
dimensions. The original problem of estimation of the parameter B now
can be treated as a game <G, L, r). The solution of the game was found
in Grzybowski (1997). It was proved that if the uncertainty class G is
convex then any afTinc linear estimator d* which is Bayes with respect to
the least favourable pair oj matrices is minimax-robust (note that the Bayes
risk for affine linear estimators is determined by the first two moments of
the prior distribution). The least favourable matrices A* and E* satisfy the
condition:

tr(C(A*, E*)H = sup tr(C(A, E)H) 2)
(A L)eG
where C(A, E) = (X'E~LX -f A-*)” while the estimator d* is given by the
following familiar formula:



d*(A*, £*) = C(A*, Z*)Xr(E*)_tY + C(AQ 3)

Last year, during MSA’97, we examined an uncertainty class with the
sets K and Q defined as follows: K = {A: A =dlk, de(0, do]}, i2 = {E:
E = sin, se (0, sO]}, with given real values dO, sO and I*, I, being the identity
matrices in the spaces Mk and Mn, respectively, sec Grzybowski (1997),
Hoffman (1996), Pinelis (1991). Practically, the class may represent
the case where the uncertainties connected with each coefficient Bt arc
independent and the same while the regression model satisfies two assumptions:
homoscedasticity and independence of errors Z,.

In the sequel of the paper we propose uncertainty classes representing
the situation when the uncertainties connected with each coefficient of
regression parameter B may be different and the above two assumptions
about the regression model may not be satisfied.

For convenience we adopt the following notation. For any n-dimcnsional
vectors a, b we write a>b if ai*hi, =1, n. We write a> 0 if all
components of the vector a are positive. For any matrix A we write A> 0
(A > 0) if the matrix is positive (nonnegative) definite. For any vector a the
symbol diag(a) stands for a diagonal matrix with the components of a on
the main diagonal.

3. MINIMAX ESTIMATION IN HETEROSCEDASTIC MODELS

Let SeRKand oeR" be given vectors. Let G(6, a) = K x i2 denote an
uncertainty class where the sets K and U are defined as follows: K = {Ae Mk:
A = diag(d), 0<d”"<5}, Q = {ZeMn: E = diag(s), O0<s<cr}. The class may
represent the case where the uncertainty connected with coefficients B. of
the regression parameter are different and the random errors Zi are
independent but they may have different standard deviation. The following
proposition provides the minimax estimators for such problems.

Proposition 1. Let As = diag(c5) and = diag(<x). The estimator d*(Ai,

given by (3) is the minimax estimator for the game <G(<5, a), L, r. O

In view of the above mentioned results, in order to prove the Proposition
it is sufficient to show that the two matrices (A6, EJ satisfy the condition
(2). For this purpose we need the following lemmas.

Lemma 1. Let A = [fly]*,*> 0 and H = [hu]lk,,*> 0. Let A, and Hn
be the submatrices of A and H, respectively, obtained by deleting the first
row and the first column. Then

triA~AH J-triAfAH N0 4)

Proof of Lemma 1.



Let us write down the matrix A in the following form:

One can verify that
tr(A- 41) - triAi/Hn) = tr(MH),

where

with ¢ = (flu —wTA1llw)-1.
g—_ T, , det(A(
ince au —w AT, w=

det(Au)
It appears that M >0. Indeed, for an arbitrary ~-dimensional vector
xT= (xI,xI), *1eR, x2eR*-1 we have

we see that ¢>0.

XrMx = c¢(xx- b)2, with b = wtAiilx2

Now, let e7 = (1, 1, 1) and let M *H denote the Hadamard product
of the matrices M, H. Then tr(MH) = er(M *H)e, see Rao (1973). On the
other hand, from the Schur lemma we know that (M*H)>0 for any
matrices M >0 and H ~ 0. It follows that er(M *H)c”~ 0 and the proof is
completed. O

Lemma 2. Let A>0, H~O be given k x kK matrices. Let for i= 1, ...,
K and x> 0 functions ft be defined as follows: /,(x) = tr(A" ‘H), where

i . . lau+- forj=1=i
,&*:[Mtxt with bjt:|au X J !

ad otherwise.
Then for each i= 1, ..., Kk the function/, is non-decreasing.
Proof of Lemma 2.
W ithout loss of generality we may consider i = 1. A little calculation shows

that for each x> 0 the derivative of f | does exist and

= det(An )det(A)[tr(A-1H) - t*"A~Hn)]
[det(Au ) +xdet(A)]2



In view of Lemma | and our assumptions about the matrices /1 and B,
the derivative is nonnegativc, which completes the proof. O

Proof of the Proposition 1L
For any A = diag”,, d2, ..., d* and L = diag(.st, s2, ..., s,), A>0, E >0,
let the function g(dIt ..., dk, st, sj be defined as follows: g(dt, dk,
su ..., s, =T(A,I) =

tr{[Xrd iag(g, S_n) X + diag (J X &2 ]1'H (5)

It is easy to check that the function g can also be expressed in the
following way: g(dx, dk, su ..., sn) =

tr[diag(dp dKH\ - tr[Xdiag(</j, dt)Xr + diag(s], S,)]_1IN (6)

where M = Xdiag(dyl, dk) Hdiag(t/j, dk) \'. Note that M>0.

It can be seen from (5) that for each i= 1, K the function g as
a function of dt is of the same form as the functions /, from Lemma 2.
The relation (6) shows that g as a function of s, has got the form: const

- /jfl). Thus, in view of (5), (6) and Lemma 2, the function g is
\'sid
non-decreasing w.r.t. each variable dlt dk, sit ..., s,. It results that on
the set {(d, s)eR*xR": 0<d”<5, 0<s”o-} it achieves its maximum at the
point (6, n). Since the set is convex the condition (2) yields the desired
result. O
One may notice that in the considered case the least favourable states
of nature (and associated with them minimax estimators) are intuitive - the
matrices As, £, are connected with greatest values of variances of the
regression parameter and error, respectively. In the next section we discuss
a problem where there is no such “predictable” value of the least favourable
state of nature.

4. MINIMAX ESTIMATION IN SOME PROBLEMS CONNECTED WITH CORRELATION
BETWEEN ERRORS

pH-n
Let P(p) denote a matrix with elements pu=y—2, |/j| < 1 Such

matrices appear in a natural way in the case where the dependence between
errors can be described by the following first order autocorrelation process:



where V = (Kj, V2, Vh) is a random vector with E(V) = 0 and D2(V) = al,,
O<co<co. It is well-known that then Cov(Z) = a)P(p).

I'or given constants <u>0, —\<.pl <.p2<\ let us consider an uncertainty
class G(S, 0), pu p2 = K x £2 with the set K defined as previously while
i2={£feM ,:1 = E(w, a) = wfaP*j)+ (1 - a)P(/?2)], 0< w<w, 0< @< 1}.

The following proposition provides the minimax estimators when the
uncertainty class is G5, co, p,, p2).

Proposition 2. There exists a number aoG[0> 1] such that the pair of
matrices As, E(ro, a0) is the least favourable state of nature and the estimator
d*[A)> ao)] * the minimax estimator in the game <G(4, co, pu p2t L,r).
I he number aoe[0, 1] depends on the matrices X and H. O

Proposition 2 states that, as in the previous case, the least favourable
matrix A is associated with the greatest variances of /¥. On the other hand
the proposition asserts that the least favourable value of the parameter
a depends on the matrices X, H and, in that sense, the least favourable
covariancc matrix of the vector Z is “unpredictable”.

| he proof oi Proposition 2 is based on Lemma 2 and will be omitted.
In the sequel we present some numerical examples to show how a0 depends
on the matrix Il determining the loss. The dependence yields that our
solution does not have the feature: “minimax prediction” equals “prediction
based on minimax estimate of the regression parameter”. The solution of
the problems considered in the previous Section has got such a property.

In our examples we consider the model (1) with the following fixed
values of its characteristics:

5 10 15

10 5 15
-5 10 ~-15
K=3 nw7, X= 5 15 10
- 15 10 5
-5 15

10 - 15 -5

In all examples we consider the class G5 w, 0, 0.5) with fixed values
%= (10, ..., 10) and co = 10. This is because we already know how the
estimators depend upon these values. To simplify the notation we write
Tr(ot) instead of tr{C[Ai; E(w, a)] H}.

Example 1. The classical problem of estim ation of the regression parameter.

In this example we consider the case where H = 1, i.e. the classical
problem of estimation of the parameter /2. Figure 1 shows the graph of
the function Ir. We can see that it has got one maximum.



Fig. 1. The function Tr for the problem of estimation of [i.

It can be numerically verified that the maximum is taken on for
<nax= 0,728304.

Example 2. The prediction of the dependent variable.
Now let us consider a problem of prediction of the value of the
dependent variable Y when the independent variables take on the following

values: = 1, x2=5 x3=9. The corresponding matrix determining the
1 5 9

loss function is of the following form: H = 5 25 45 . The graph of the
9 45 81

function Tr in this case is presented in Fig. 2. Numerical calculation shows
that the only maximum of Tr is achieved for amt& 0,812536.

Fig. 2. The function Tr for the problem of prediction for x, = 1, x2- 5, x3=9



The two above examples show that the least favourable value of the
parameter a (and the associated covariance matrix £) can hardly be
considered as intuitive. The value changes for different matrices H. It seems
that in such situations we have different minimax estimators for various
purposes (such as the estimation of regression parameter, prediction for
different values of independent variables etc.) even in the same model. So,
in the case of correlated errors one should be partiularly aware of the
purpose of the minimax estimation.
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