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FUTURE LIFE-TABLES BASED ON THE LEE-CARTER
METHODOLOGY AND THEIR APPLICATION
TO CALCULATING THE PENSION ANNUITIES'

Summary. In the paper a new recursive approach to the mortality forecasting is
proposed based on the well-known Lee-Carter stochastic model. The standard Lee-
-Carter method and its modified version are presented and compared using mortality data
for Poland in the time period 1990-2007. The results obtained indicate that the recursive
approach gives more accurate forecasts in terms of the mean squared error.

Stochastic forecasts of age-specific death rates are also used to predict death prob-
abilities and life expectancy being the main parameters of the life-tables. As an example,
future life-tables for 2020 are calculated. Applications of Lee-Carter methodology in
pension annuity calculations are presented.
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1. Introduction

Long-standing observations of different characteristics of the survival distri-
bution in human population show that the characteristics change in time. For
instance, observations of annual probabilities of death giving survival to an age
x, conducted in the developed countries, show that such probabilities have been
decreasing in the recent decades, although the changes are irregular. Thus, the
considered probabilities can be therefore viewed as processes that are character-
ised by certain stochastic variability, in addition to their general tendency. The
other indicators have been showing a similar, stochastic character, for instance,
life expectancy, mortality rates or rectangularization indices of the survival func-
tions [Wilmoth, Horiuchi, 1999].

The trends and regularities observed in the developed countries in the sec-
ond half of the 20" c. with respect to some of the aforementioned indicators can
be summed up as follows:

— the mode of the death intensity curve moves towards very old ages,

— concentration of deaths around the mode is increasing,
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— the survival curve is undergoing rectangularization (which is a result
from the tendencies outlined above),

— accidental deaths at young ages (especially male twenty-year-olds) have
been growing (injuries, accidents, poisoning),

— both male and female life expectancy have been increasing.

The phenomena produce various socio-economic consequences. One of
them is the growing numbers of people surviving to the retirement age, as well
as an extending period of time in which the pension annuity providers need to
pay out the benefits. Therefore, improving mortality rates have a direct effect on
the present value of future liabilities and its related level of reserves held by
institutions paying the benefits. A reliable estimation of mortality rates in the
future periods becomes therefore a key approach.

This paper uses the Lee-Carter methodology to derive mortality forecasts for
Poland up to 2020. The recursive version of the Lee-Carter stochastic approach
is proposed. The standard and recursive Lee-Carter method are presented and
compared using mortality data for Poland. The results obtained indicate that the
new approach gives more accurate forecasts in terms of the mean squared error.
Stochastic forecasts of age-specific death rates are also used to predict death
probabilities and life expectancy being the main parameters of the life-tables.

The forecasts of probabilities of death will be used to calculate the pension
annuities to be paid out under the so-called ,,second and third pillar” of the Polish
pension system. Pension annuities are calculated from amounts accumulated on
individual funds kept by the Open Pension Funds (OPF), the Employee Pension
Schemes (EPS) or the Individual Pension Accounts (IPA).

2. The Lee-Carter methodology

The fist attempt at mathematical modelling of the intensity of deaths in dy-
namic terms was undertaken by Blaschke [1923] who considered so-called dy-
namic Makeham’s law. The model assumes that the mortality intensity u.(?) is
function of not only age x, but also of calendar time 7. The effect of the time
variable 7 was expressed in the model through some deterministic function.

The stochastic character of mortality-related processes justifies the need of
reaching for the stochastic methods for modelling, forecasting and describing the
phenomena. This is very important, especially with respect to the accuracy of the
forecasts of their future development. Among the stochastic models for forecast-
ing mortality that are popular today, there is the Lee-Carter model.

In the 1990s, Lee and Carter [Lee, Carter 1992] attempted to apply the the-
ory of random walk with a drift to modelling and subsequently forecasting the
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crude age-specific death rates m,(), cross-classified by age x, and by calendar
year ¢. The model has the form

In m(¢) = a,+bk+e., for x=0,1,..,0, t=12,..,7T, (1)
or equivalently
my(t) = exp{a,+bk+e,} for x=0,1,..,0, t=12,..,7T, 2)

where {a,} and {b,} are sets of some constants that are different for different age
groups x, and k, is an index viewed as a discrete-time stochastic process. Double-
index terms &, represent the random errors reflecting particular age-specific
influences not captured by the model. It is assumed that &, , are independent ran-
dom variables, normally distributed with the mean equal 0 and variance c”.

The model (1) or (2) is undetermined without additional constraints. Let us
assume, for instance, that we have an empirical data matrix M of logarithms of
specific mortality rates, i.e. a matrix with elements In m(7) in the body, where
x=0,1,...,® denotes the age group (matrix rows), whereas r=1,2,...,T are calendar
years (matrix columns). Let for a set of parameters {a,}, {b.}, x=0,1,... ® and
{k;}, =1,2,...,T the model (1) be valid. It is easy to verify that for any constant ¢
and the set of parameters {a,— cb,}, {b.} {k+c} or {a.}, {cb.} {k/c} the model
(1) also holds. Hence, the parameters k, are determined to the transformation
k+c or k/c, parameters b, are determined to the multiplicative constant, whereas
the parameters a, — to the additive constant.

To ensure the unique parameters of the model (1) it is necessary to define
certain additional constraints. To this end, Lee and Carter assumed that the sum
of the parameters b, for all age groups (indexed by x) equals 1, whereas the sum
of the parameters k, (indexed by f) equals 0. Thus, the parameters b, and £,
satisfy the following constrains

[

T 1 T
b. =1, k,=0, sothat a,=—)» Inm,(¢).
> by ; . - ; ®)

It follows, that under these constrains the parameters a, describe the age pat-
tern of mortality averaged over time, whereas b, describe deviations from the
averaged pattern when k, varies. The parameters &, describe the effect of the
calendar time # on a change in the mortality.

The model (1) is fitted to the crude death rates m (¢) = Iix—((tt)) 1000, where

X

d_(t) denotes the number of deaths observed at age x and time 7, and K ()
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denotes the exposure to the risk of death at age x. In our approach, we will re-
place crude death rates by their estimates m_(¢)obtained from the expressions

i (1) =20

2-4,(0)
giving survival to age x. Probabilities g _(¢) will be taken from the period life-
tables published for years 1990-2007 by the Central Statistical Office.

-1000, where ¢ (¢) denotes the probability of death in year ¢,

3. Forecasting from the Lee-Carter model

Let us assume that the parameters a, and b, in the model (1) are constant in
time ¢, which means that estimates of the parameters, once derived, can be used
in the future, and the mortality forecasts can be obtained by modelling %, as
a time series. The forecasts concerning the predicted values of &, together with
the estimates of the parameters a, and b, allow, based on the model (1), fore-
casting long-term mortality, and more specifically, forecasting the logarithms of
deaths rates for future periods 7.

As proposed by Lee and Carter, finding the values of &, for r=1,2,...,T pro-
vides a starting point for modelling a time series {k;} as a random walk with drift
that can be described using the formula

ky=ctk,+e,, (3)

where ¢ stands for a constant (a drift), while ¢, is an error term with normal dis-
tribution with the mean 0 and a finite variance. This approach allows reducing
accumulation of error terms resulting from the short-term variability in mortality
rates, which largely influences the accuracy of the forecasts.

The estimator of the drift ¢ has the form

n 1
CZH(kT — k), 4)

whereas the variance estimator of ¢ is given by the formula

2

R 1 < .
O-c2 :ﬁ;(kt _kt—] _C) . ®)

Estimation of the constant ¢ allows making forecasts concerning k, for £~T.
Inserted in model (1), where the parameters a, and b, are replaced by their esti-
mates, allows making the forecasts of future log-central mortality rates for >T.
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Then it is also possible to estimate other parameters for future periods in order to
obtain the so-called future life-tables.

4. Model fitting

In the Lee-Carter methodology the Singular Value Decomposition (SVD) is
applied to derive the parameters a,, b,, and ..
Let us consider the matrix

A=l (O ~a ., .- (6)

SVD allows representing each element of the matrix A as the following sum

I, (0)—a, = 3, -u,(6)v, (), %)

i=1

where r =rank {A}, 4,,i=12,...,r are the ordered (increasingly) singular values,
and u;,v, are the corresponding left and right singular vectors of A.
Let us consider the following representation

ln’/hx(t)_ax :Al 'ul(x)'yl(t)+€

X,

where ¢, = zﬂf “u; (x) v, (1)
i=2

Such a representation leads directly to the Lee-Carter model

Inm (t)-a,=b, -k +¢&,,

[ T
with b, -k, =2, -, (x) v (1) and Y b =1, >k =0.
x=0 t=1
Thus the Lee-Carter model is simply the SVD approximation of the matrix
A =[lnm, (t)-a ]
The percentage of the total variance explained by the Lee-Carter model is

A / Z A7 . Since the first singular value A, is usually much larger than all the

i=1
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others, therefore the percentage of the total variance explained by the model is
usually very high. For instance, Tuljapurkar et al., (2000) found that for some
countries (with low mortality) over 94% of the variance was explained by the
model (1).

The Lee-Carter methodology and the subsequent modifications are broadly
discussed in the literature [e.g. Carter, 1996; Lee, 2000; Booth et al., 2002;
Brouhns et al., 2002a,b; Renshaw, Haberman, 2003a,b,c; Li et al., 2004; Lund-
strom, Qvist, 2004; Brouhns et al., 2005; Koissi, Shapiro, 2006; Koissi et al.,
2006; Denuit, Dhaene, 2007].

5. The recursive procedure of the Lee-Carter approach

In this section a modification of the Lee-Carter approach based on a recur-
sive algorithm is proposed.

Let A® be a matrix with elements obtained in the k-th step of the recursive

procedure. If k=1 then A reduces to the matrix A with elements defined in
(6). The procedure can be described as follows:

[1.] Apply the standard Lee-Carter approach using A’ and derive forecasts of
Inm (¢), x=0,1,...,m, i.e. for one year ahead.

[2.] Attach the values of Inm () obtained in the step 1 to the matrix A% as an

additional column, giving the matrix A%

[3.] Repeat the steps 1-2 taking k:=k+1, until k£ reaches the assumed horizon of
forecast.

As it will be shown, the recursive Lee-Carter procedure (RLC) gives quite
similar estimates of a,,b,, for x=0,1,..., ® as the standard Lee-Carter approach
(SLC). However, the estimates of k, for +=1,2,...,T differ substantially. What is
more, the longer is the time horizon of forecasting the greater is the difference in
the estimates of £, .

Both approaches RLC and SLC will be used to forecast the crude death rates
for Poland (male and female). The forecasts will be then used to derive the
male’s and female’s future life-tables for the year 2020.
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6. Estimation of the Lee-Carter parameters for Poland

To estimate the Lee-Carter’s parameters for Poland we derived data from
life-tables for time period 1990-2007 that are available at the website of Central
Statistical Office (www.stat.gov.pl). The estimates of parameters a, and b, for
x=0,1,...,100, obtained by means of the SLC and RLC approaches, are presented
on Figures 1-2 (separately for men and women).

Based on the estimates of &, the parameter was projected for future periods.
To this end, the formula (3) was applied, where the constant ¢ was estimated
using (4). The estimates of k, together with forecasts are presented in Figure 3.

age

Fig. 1. Estimates of a, for x[0,100] from the recursive and standard Lee-Carter model (model
fitting based on the period male’s life-tables for 1990-2007 )

Source: Developed by the author.

recursive LC = = standard LC
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Fig. 2. Estimates of b, for xe[0,100] from the recursive and standard Lee-Carter model
(model fitting based on the period male’s life-tables for 1990-2007)

Source: Developed by the author.
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Fig. 3. Estimates of &, from the recursive and standard Lee-Carter model
for the years 1990-2007 and its 2008—2020 forecast (model fitting based on the period
male’s life-tables for 1990-2007)

Source: Developed by the author.



Future Life-Tables Based on the Lee-Carter Methodology... 39

6

5

4 -

3

2

14

0 \

1Y P
2 4
-3

age
‘ recursive LC = = standard LC
Fig. 4. Estimates of a, for xe[0,100] from the recursive and standard Lee-Carter model
(model fitting based on the period female’s life-tables for 1990-2007 )
Source: Developed by the author.

0,030

0,020 -

0,010 -

0,000 T T T T T T T T T

0 10 20 30 40 50 60 70 80 90 100
age

® recursive LC — standard LC

Fig. 5. Estimates of b, for x€[0,100] from the recursive and standard Lee-Carter model
(model fitting based on the period female’s life-tables for 1990-2007)

Source: Developed by the author.
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Fig. 6. Estimates of k, from the recursive and standard Lee-Carter model
for the years 1990-2007 and the 2008—2030 forecast (model fitting based on the period
female’s life-tables for 1990-2007)

Source: Developed by the author.

recursive LC = = standard LC‘

The projections of the parameters &, for £~T were then used to forecast some life-
table parameters within the time horizon 2008-2020. Tables 1 and 2 present annual
probabilities of death ¢.(f) giving survival to x and their estimates ¢ (¢) and

quC (7) for the year r=2009 (separately for men and women) obtained by means of

both the recursive and standard Lee-Carter approach. Based on these estimates the
mean squared errors for both types of estimators in relation to the real values of g,(?),
for x=0,1,..., ® were calculated. Means squared errors were defined as follows:

MSE™ (1) = \/w%li(qx (O~ g™ (1))

MSES (1) = \/%—Hi (q,() =g (1)) .

SLC
x

where ¢ (1), ¢%“(t) represent estimates of ¢ (¢) for the age group

x=0,1,...,100 received by means of the recursive and standard Lee-Carter method
for the year =2009.

Tables 3 and 4 present the male’s and female’s life expectancies e, (2009)
and their forecasts efLC (¢) for =2009 and =2020.
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Tab. 1. Forecasts of male’s death probabilities from the recursive and standard LC model (2009)

Agex | ¢.(2009) | ¢"€2009) | ¢%°(2009) | Agex | ¢.(2009) | ¢™°(2009) | ¢%€(2009)
0 0.00604 0.00573 0.00573 48 0.00716 0.00747 0.00747
1 0.00035 0.00041 0.00041 49 0.00788 0.00817 0.00818
2 0.00024 0.00028 0.00028 50 0.00866 0.00892 0.00892
3 0.00017 0.00020 0.00020 51 0.00949 0.00970 0.00970
4 0.00015 0.00017 0.00017 52 0.01038 0.01052 0.01052
5 0.00014 0.00017 0.00017 53 0.01133 0.01137 0.01138
6 0.00015 0.00017 0.00017 54 0.01234 0.01227 0.01227
7 0.00016 0.00016 0.00016 55 0.01341 0.01322 0.01322
3 0.00015 0.00016 0.00016 56 0.01453 0.01422 0.01422
9 0.00015 0.00016 0.00016 57 0.01571 0.01530 0.01530
10 0.00014 0.00016 0.00016 58 0.01695 0.01647 0.01647
11 0.00014 0.00017 0.00017 59 0.01824 0.01774 0.01774
12 0.00016 0.00018 0.00018 60 0.01958 0.01910 0.01910
13 0.00020 0.00021 0.00021 61 0.02097 0.02058 0.02058
14 0.00027 0.00027 0.00027 62 0.02244 0.02216 0.02217
15 0.00038 0.00035 0.00035 63 0.02397 0.02387 0.02387
16 0.00053 0.00046 0.00046 64 0.02559 0.02569 0.02570
17 0.00071 0.00062 0.00062 65 0.02731 0.02765 0.02765
18 0.00089 0.00077 0.00077 66 0.02915 0.02974 0.02974
19 0.00103 0.00088 0.00089 67 0.03113 0.03197 0.03197

20 0.00112 0.00096 0.00096 68 0.03327 0.03437 0.03438
21 0.00114 0.00102 0.00102 69 0.03559 0.03698 0.03698
22 0.00113 0.00105 0.00105 70 0.03814 0.03980 0.03981
23 0.00111 0.00106 0.00106 71 0.04094 0.04287 0.04288
24 0.00109 0.00105 0.00105 72 0.04405 0.04620 0.04621
25 0.00108 0.00106 0.00106 73 0.04751 0.04982 0.04982
26 0.00109 0.00108 0.00108 74 0.05138 0.05371 0.05371
27 0.00112 0.00112 0.00112 75 0.05572 0.05793 0.05794
28 0.00117 0.00118 0.00118 76 0.06057 0.06254 0.06254
29 0.00125 0.00124 0.00124 77 0.06596 0.06758 0.06759
30 0.00133 0.00132 0.00132 78 0.07191 0.07315 0.07316
31 0.00143 0.00142 0.00142 79 0.07844 0.07926 0.07927
32 0.00155 0.00153 0.00153 80 0.08555 0.08591 0.08592
33 0.00169 0.00166 0.00166 81 0.09323 0.09306 0.09308
34 0.00185 0.00182 0.00182 82 0.10148 0.10050 0.10051
35 0.00203 0.00200 0.00200 83 0.11030 0.10826 0.10827
36 0.00223 0.00220 0.00220 84 0.11971 0.11642 0.11643
37 0.00245 0.00242 0.00242 85 0.12973 0.12470 0.12471
38 0.00270 0.00268 0.00268 86 0.14041 0.13422 0.13424
39 0.00297 0.00297 0.00297 87 0.15176 0.14436 0.14438
40 0.00327 0.00329 0.00329 88 0.16386 0.15514 0.15516
41 0.00360 0.00365 0.00365 89 0.17676 0.16661 0.16663
42 0.00397 0.00406 0.00406 90 0.19041 0.17876 0.17878
43 0.00438 0.00452 0.00452 91 0.20512 0.19169 0.19171
44 0.00484 0.00502 0.00503 92 0.22063 0.20535 0.20537
45 0.00534 0.00558 0.00558 93 0.23694 0.21976 0.21979
46 0.00589 0.00617 0.00617 9% 0.25406 0.23493 0.23495
47 0.00650 0.00680 0.00680 95 0.27196 0.25085 0.25087

MSE 0,00685 0,00748

Source: Developed by the author.
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Tab. 2. Forecasts of female’s death probabilities from the recursive and standard LC model (2009)

Agex | ¢.(2009) | ¢"€2009) | ¢%°(2009) | Agex | ¢.(2009) | ¢™°(2009) | ¢%€(2009)
0 0.00507 0.00448 0.00449 48 0.00261 0.00271 0.00271
1 0.00030 0.00029 0.00029 49 0.00290 0.00301 0.00301
2 0.00022 0.00021 0.00021 50 0.00322 0.00333 0.00333
3 0.00017 0.00016 0.00016 51 0.00356 0.00366 0.00366
4 0.00014 0.00013 0.00013 52 0.00392 0.00401 0.00401
5 0.00013 0.00013 0.00013 53 0.00431 0.00437 0.00437
6 0.00013 0.00012 0.00012 54 0.00472 0.00474 0.00474
7 0.00013 0.00011 0.00011 55 0.00517 0.00512 0.00512
3 0.00013 0.00011 0.00011 56 0.00564 0.00551 0.00551
9 0.00012 0.00011 0.00011 57 0.00614 0.00590 0.00590
10 0.00012 0.00011 0.00011 58 0.00666 0.00630 0.00630
11 0.00013 0.00012 0.00012 59 0.00720 0.00671 0.00671
12 0.00015 0.00013 0.00013 60 0.00776 0.00714 0.00714
13 0.00018 0.00014 0.00014 61 0.00833 0.00762 0.00762
14 0.00021 0.00016 0.00016 62 0.00893 0.00816 0.00816
15 0.00023 0.00019 0.00019 63 0.00955 0.00878 0.00878
16 0.00024 0.00023 0.00023 64 0.01021 0.00949 0.00949
17 0.00025 0.00025 0.00025 65 0.01092 0.01030 0.01031
18 0.00026 0.00026 0.00026 66 0.01172 0.01124 0.01124
19 0.00026 0.00026 0.00026 67 0.01262 0.01232 0.01233

20 0.00026 0.00026 0.00026 68 0.01367 0.01358 0.01358
21 0.00025 0.00025 0.00025 69 0.01491 0.01504 0.01505
22 0.00025 0.00025 0.00025 70 0.01637 0.01674 0.01675
23 0.00026 0.00025 0.00025 71 0.01811 0.01872 0.01872
24 0.00026 0.00025 0.00025 72 0.02019 0.02098 0.02099
25 0.00026 0.00026 0.00026 73 0.02266 0.02359 0.02360
26 0.00028 0.00027 0.00027 74 0.02557 0.02660 0.02661
27 0.00030 0.00028 0.00028 75 0.02897 0.03007 0.03008
28 0.00033 0.00031 0.00031 76 0.03292 0.03407 0.03408
29 0.00037 0.00033 0.00033 77 0.03745 0.03866 0.03867
30 0.00039 0.00035 0.00035 78 0.04258 0.04388 0.04390
31 0.00043 0.00038 0.00038 79 0.04835 0.04973 0.04974
32 0.00046 0.00041 0.00041 80 0.05475 0.05615 0.05616
33 0.00050 0.00045 0.00045 81 0.06181 0.06314 0.06316
34 0.00055 0.00050 0.00050 82 0.06953 0.07058 0.07060
35 0.00061 0.00055 0.00055 83 0.07793 0.07857 0.07859
36 0.00068 0.00062 0.00062 84 0.08703 0.08723 0.08726
37 0.00075 0.00069 0.00070 85 0.09687 0.09641 0.09644
38 0.00084 0.00079 0.00079 86 0.10750 0.10705 0.10707
39 0.00094 0.00089 0.00089 87 0.11893 0.11857 0.11860
40 0.00105 0.00102 0.00102 88 0.13126 0.13105 0.13108
41 0.00118 0.00116 0.00116 89 0.14454 0.14453 0.14456
42 0.00132 0.00133 0.00133 90 0.15871 0.15901 0.15905
43 0.00148 0.00152 0.00152 91 0.17407 0.17465 0.17469
44 0.00167 0.00172 0.00172 92 0.19041 0.19136 0.19140
45 0.00187 0.00194 0.00194 93 0.20770 0.20916 0.20920
46 0.00210 0.00217 0.00217 9% 0.22595 0.22804 0.22809
47 0.00234 0.00243 0.00243 95 0.24514 0.24801 0.24806

MSE 0,00143 0,00159

Source: Developed by the author.
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As we can see from Tables 1 and 2, the death probabilities predicted by
means of the RLC and SLC methods are similar for small x, but the differences
increase for old ages.

Due to these differences the mean squared errors (attached in the last rows of

Tables 1 and 2) satisfy the inequality MSE"“(2009) < MSE**“ (2009).

Tab. 3. The male‘s life expectancy and its forecasts from the recursive LC model

(for 2009 and 2020)

Agex e,(2009) ef€(2009) | ef€(2020) | Agex | e,(2009) M€ (2009) € (2020)
a b c d e f g h
0 71.5 71.5 74.2 48 26.7 26.7 28.6
1 71.0 70.9 73.4 49 25.9 25.9 27.8
2 70.0 69.9 72.4 50 25.1 25.1 27.0
3 69.0 69.0 71.4 51 24.4 24.3 26.2
4 68.0 68.0 70.4 52 23.6 23.5 25.4
5 67.0 67.0 69.4 53 22.8 22.8 24.6
6 66.0 66.0 68.4 54 22.1 22.0 23.9
7 65.1 65.0 67.4 55 21.4 21.3 23.1
8 64.1 64.0 66.4 56 20.6 20.6 22.4
9 63.1 63.0 65.4 57 19.9 19.9 21.6
10 62.1 62.0 64.5 58 19.2 19.2 20.9
11 61.1 61.0 63.5 59 18.6 18.5 20.2
12 60.1 60.1 62.5 60 17.9 17.8 19.5
13 59.1 59.1 61.5 61 17.2 17.2 18.8
14 58.1 58.1 60.5 62 16.6 16.5 18.1
15 57.1 57.1 59.5 63 16.0 15.9 17.4
16 56.2 56.1 58.5 64 15.4 15.2 16.8
17 55.2 55.1 57.5 65 14.7 14.6 16.1
18 54.2 54.2 56.6 66 14.1 14.0 15.5
19 53.3 53.2 55.6 67 13.6 13.5 14.9
20 52.3 52.3 54.6 68 13.0 12.9 14.3
21 51.4 51.3 53.7 69 12.4 123 13.7
22 50.4 50.4 52.7 70 11.8 11.8 13.1
23 49.5 49.4 51.8 71 11.3 11.2 12.5
24 48.6 48.5 50.8 72 10.8 10.7 12.0
25 47.6 475 49.8 73 10.2 10.2 11.4
26 46.7 46.6 48.9 74 9.7 9.7 10.9
27 45.7 45.6 47.9 75 9.2 9.3 10.4
28 44.8 44.7 47.0 76 8.7 8.8 9.9
29 43.8 43.7 46.0 71 8.3 8.3 9.4
30 42.9 42.8 45.0 78 7.8 7.9 9.0
31 41.9 41.8 44.1 79 74 7.5 8.5
32 41.0 40.9 43.1 80 6.9 7.1 8.1
33 40.0 40.0 422 81 6.6 6.7 7.7
34 39.1 39.0 41.2 82 6.2 6.4 7.3
35 38.2 38.1 40.3 83 5.8 6.0 6.9
36 373 37.2 39.3 84 5.5 5.7 6.5
37 36.3 36.2 38.4 85 5.1 54 6.2
38 35.4 353 37.5 86 4.8 5.1 5.8
39 34.5 34.4 36.6 87 4.5 4.8 5.5
40 33.6 33.5 35.6 88 43 45 5.2
41 32.7 32.6 34.7 89 4.0 4.2 4.9
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Tab. 3. (cont.)

a b c d e f g h
42 31.8 31.8 33.8 90 3.8 4.0 4.6
43 31.0 30.9 32.9 91 3.5 3.7 43
44 30.1 30.0 32.0 92 3.3 3.5 4.1
45 29.3 29.2 31.2 93 3.1 32 3.8
46 28.4 28.3 30.3 94 2.9 3.0 3.6
47 27.6 27.5 29.5 95 2.7 2.8 34

Source: Developed by the author.

Tab. 4. The female’s life expectancy and its forecasts from the recursive LC model

(for 2009 and 2020)

Agex e,(2009) efC(2009) | ef€(2020) | Agex | ¢ (2009) M€ (2009) € (2020)

a b c d © f g h

0 80.1 80.1 82.6 48 33.6 33.6 35.6
1 79.5 79.5 81.7 49 32.7 32.7 34.7
2 78.5 78.5 80.7 50 31.8 31.8 33.8
3 77.5 77.5 79.8 51 30.9 30.9 32.9
4 76.5 76.5 78.8 52 30.0 30.0 32.0
5 75.5 75.6 77.8 53 29.1 29.1 31.1
6 74.5 74.6 76.8 54 28.2 28.3 30.2
7 73.5 73.6 75.8 55 27.4 27.4 29.3
8 72.6 72.6 74.8 56 26.5 26.5 28.5
9 71.6 71.6 73.8 57 25.7 25.7 27.6
10 70.6 70.6 72.8 58 24.8 24.8 26.8
11 69.6 69.6 71.8 59 24.0 24.0 25.9
12 68.6 68.6 70.8 60 23.2 23.1 25.0
13 67.6 67.6 69.8 61 22.3 22.3 24.2
14 66.6 66.6 68.8 62 21.5 21.5 23.3
15 65.6 65.6 67.8 63 20.7 20.6 22.5
16 64.6 64.7 66.8 64 19.9 19.8 21.6
17 63.7 63.7 65.9 65 19.1 19.0 20.8
18 62.7 62.7 64.9 66 18.3 18.2 20.0
19 61.7 61.7 63.9 67 17.5 17.4 19.1
20 60.7 60.7 62.9 68 16.7 16.6 18.3
21 59.7 59.7 61.9 69 16.0 15.8 17.5
22 58.7 58.7 60.9 70 15.2 15.1 16.7
23 57.7 57.8 59.9 71 14.4 14.3 15.9
24 56.8 56.8 58.9 72 13.7 13.6 15.1
25 55.8 55.8 58.0 73 13.0 12.9 14.3
26 54.8 54.8 57.0 74 12.3 12.2 13.6
27 53.8 53.8 56.0 75 11.6 11.5 12.8
28 52.8 52.8 55.0 76 10.9 10.8 12.1
29 51.8 51.9 54.0 77 10.2 10.2 114
30 50.9 50.9 53.0 78 9.6 9.6 10.8
31 49.9 49.9 52.0 79 9.0 9.0 10.1
32 48.9 48.9 51.0 80 8.5 8.4 9.5
33 479 479 50.1 81 7.9 7.9 8.9
34 46.9 46.9 49.1 82 74 74 8.4
35 46.0 46.0 48.1 83 6.9 6.9 7.9
36 45.0 45.0 47.1 84 6.5 6.5 7.4
37 44.0 44.0 46.1 85 6.0 6.0 6.9
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Tab. 4. (cont.)

a b c d e f g h
38 43.1 43.1 45.2 86 5.6 5.6 6.4
39 42.1 42.1 44.2 87 5.3 5.2 6.0
40 41.1 41.1 43.2 88 4.9 4.9 5.6
41 40.2 40.2 42.2 89 4.6 4.5 5.2
42 39.2 39.2 41.3 90 4.2 4.2 4.8
43 383 383 40.3 91 39 39 4.5
44 373 373 39.4 92 3.7 3.6 4.2
45 36.4 36.4 38.4 93 34 34 39
46 35.5 35.5 37.5 94 3.2 3.1 3.6
47 34.5 345 36.5 95 3.0 29 34

Source: Developed by the author.

7. Application of the future life-tables to calculation of pension
annuities

Let us consider the amount of a retirement income to be paid out by a pen-
sion provider to a person aged x years (we assume that age x is rounded to an
integer) in the form of a life annuity. To determine the amount of monthly pay-
ments, we shall use in this investigation an actuarial formula employed to calcu-
late the present value of the life annuity payable at the beginning of each month
[see Skatba, 2002].

Let us assume then that life annuity is paid out m times within a year (for the
monthly payments we have m=12), at the beginning of each subperiods the
length of which is given by 1/m of a year, with the instalment amount being 1/m
zlotys (so that the total annual amount due will be 1 zI; this is a so-called nor-
malized case). Let us assume further that the last payment is effected at the be-
ginning of the subperiod in which the recipient dies.

Let T(x) be a non-negative random variable. representing the remaining

lifetime of the x-year-old person, while 7" (x) = [T'(x)]. Besides, let S™ denote

a rounded-up portion of the last year of recipient’s life with accuracy to
a subperiod lasting 1/m.

Note that S is a discrete random variable taking its values from the set

{l 2 ’”—_11} (8)

b b
m m m

The present value Y™ of the payments is a random variable, which can be
written using the following formula
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1 12 T (xyes(m L
Y(m):_[1+v’”+v’”+---+v i "o
m

where v=1/(1+1) is the so-called discount rate and i is an average rate of return

calculated for several periods [see Skatba, 2002, p. 13]).
Using the formula for the sum of a geometric series

1—
ag’ +aq' +aq® +...+aqg" " =a 9 ,

the variable ¥ can be expressed as follows

(m) _ 1 i 0 # 1 i 2 i mT ()rmsM 1 |
Y'"=— | (vm)y " +(v™) +(v") +...+(v™) =
m

1 1- (Vi )mT*<x)+mS(’") =T st

B 1

. 1 T T
" [—vym " [—vym

We shall calculate the expected value of Y which is denoted by dfcm) .

Assuming that 7" (x) and S are independent we have

i =g[rm)=L. L (1—E(VT*<X>*S("” Dz
o—ym
)

- 1 (1—E(VT*MH)-E(VS(M)_ID.
m T

1—vm

The expected value E(vT *(")“) represents the so-called present value of a

benefit (equal 1 zloty), payable at the end of year of death. In other words, it is
an actuarial value of whole life insurance on being 1 zloty, payable at the end of
the year of death. In the actuarial notation, it is usually denoted by A4 . The

value is

k+1

Ax = E(VT*(X)H): VD s - (10)

)
k=0
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where probabilities
(P =PI >k). g =PT(x+k)<1) (11)

denote, respectively, the probability of surviving k consecutive years giving
survival to x, and the probability of dying within a year giving survival to x+k.

(m) _ . .
The other expected value E(vs lj can be determined assuming that the

variable S takes values from (8) with identical probabilities equal 1/m. Then
we have

S(m) ]\J Zy ko 1 1 1 L L k 1 1 L 1-v
m . vm (vm) =_._.vm.
( ,Z‘ m m v kzz(:‘ m v 1— vi
or after straightforward transformation
1
E(vs(m)“j Ll v (12)

m v -
I—v™

Formulae (9), together with (10), (12), and using probabilities (11) allow
calculating the expected value di’") (also d@').

Let K denote the amount of funds accumulated at the OPF by a person retir-
ing at the age x years. Le B denote the monthly pension annuity (benefit) that
a pensioner receives from the annuity provider. We will assume that the pension
amount B is derived from the following equation, related to the present value of the
life annuity paid monthly in advance [see e.g. Szumlicz T. ed., 2007]

K=12-B-(1-y)-a'. (13)

where v is a share of charges for the annuity provider.
In order to derive a benefit B from (13) it is necessary to take certain as-
sumptions about the value of the accumulated capital K and the share of charges

Yy, etc. Besides, it is necessary to find the actuarial value of life annuity a(lz).

which is calculated using the formulae (9), (10), (12), and by using estimates of
probabilities (11). The probabilities will be derived for future periods using the
Lee-Carter methodology. The results will be compared with analogous calcula-
tions that were made using probabilities derived from life-tables published for
2007 year by the Central Statistical Office [www.stat.gov.pl ].
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8. Scenarios of pension annuity calculations

To calculate illustrative amounts of future old-age pension annuity using
(13) the following assumptions were made:

the minimum retirement age x: 60, 65 or 70 years;
the calendar year at retirement — 2008;

the pension capital K equal 100000 or 400000 zlotys;
the share of charge y=7%;

the rate of return i equal 3% or 5%.

The probabilities (11) were used in two ways: case | — based on the future
probabilities (future life-tables) derived using the Lee-Carter methodology and
case Il — applying a period life-table for the year 2007. Besides, to analyse the
impact of gender on the level of the benefit, the calculations were made sepa-
rately for men and women. Result obtained are presented in tables 5-8.

Tab. 5. The effect of gender and minimum retirement age on the benefit level
(K=100000 zlotys, y=7%, i=3%)

The minimum retirement age x Monthly pension annuity (zlotys)
women men
x=60 years 466.75 600.84
Case | x=65 years 570.51 724.36
x=70 years 695.12 872.43
x=60 years 536.99 674.99
Case II x=65 years 635.87 794.90
x=70 years 760.84 947.45

Source: Developed by the author.

Tab. 6. The effect of gender and minimum retirement age on the benefit level
(K=400000 zlotys, y=7%, i=3%)

The minimum retirement age x Monthly pension annuity (zlotys)
women men
x=60 years 1867.02 2403.36
Case | x=65 years 2282.03 2897.44
x=70 years 2780.49 3489.72
x=60 years 2147.97 2699.96
Case 11 x=65 years 2543.50 3179.62
x=70 years 3043.38 3789.80

Source: Developed by the author.
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Tab. 7. The effect of gender and minimum retirement age on the amount of benefit
(K=100000 zlotys, y=7%, i=5%)

The minimum retirement age x Monthly pension annuity (zlotys)
women men
x=60 years 621.11 759.33
Case I x=65 years 712.73 875.29
x=70 years 837.38 1025.12
x=60 years 674.20 813.55
Case 11 x=65 years 763.94 928.73
x=70 years 889.18 1082.53

Source: Developed by the author.

Tab. 8. The effect of gender and minimum retirement age on the benefit level
(K=400000 zlotys, y=7%, i=5%)

The minimum retirement age x Monthly pension annuity (zlotys)
women men
x=60 years 2484.43 3037.00
Case I x=65 years 2850.90 3501.16
x=70 years 3349.51 4100.46
x=60 years 2696.77 3254.20
Case II x=65 years 3055.78 3714.96
x=70 years 3573.92 4341.06

Source: Developed by the author.

9. Conclusions

The results obtained reveal substantial variations in the benefits calculated using
the future and current life tables (see cases I and II) and indicate that the pension
annuities grow when the minimum retirement age is moved upwards. Lower values
of monthly payments are provided from using future life tables in the calculations
(case I) instead of period life-tables for the year 2007 (case II).

The illustrative results presented in tables 5—8 show that calculating the an-
nuities using the period life-tables may expose the annuity provider to a risk of
the considerable overestimation of benefits and thus may cause troubles with
covering future liabilities.

We can also see that the female’s pension annuities are lower both in the
case I and II. This can be explained through the fact that expected lifetime in the
female population is longer than in the male population, which directly contrib-
utes to lower amounts of benefits. It is also worth noting that even though gender
is a distinct determinant of different benefits, in practice they are calculated us-
ing the common life-tables. This leads to the overestimation of benefits for fe-
males and underestimation of benefits for males.
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