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1. INTRODUCTION

The expectation of vector = statistics is an example of Volter-
ra's (see Volterra [6]) function of function. Von M i-
s e s [5] has shown that Volterra’s calculus functions of func-
tions can be adapted to statistical functions of functions. It
is not easy, however, to translate Volterra-von Mises'’s concepts
of calculus into such manageable forms that can be used in cal-
culating the expectation of vector statistics. This is why we
propose a method of approximation of expectation that is not
based on Volterra-von Mises ideas. This method would have a few
versions depending on a way of calculating the ray r of ball
B(x, r) = {y: Ix]l < r}, shere B(x, r) 1is used in determining

the value of expression f(x) dx, and f(x) denotes a given
B(x,r)

shape of density function of random vector X.

Denoting by F(x) = Fx(x) the distribution function of random
vector X and using dF(x) = f(x) dx one can define, for exam-
ple, the following function of function used in statistic‘, eco-
nometrics, stochastic programming:

GO(F(x)) = S xdF(x) = S xf(;)dx = Go(f(x)) = G (f) = E(X).
R RN ¢
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5

(Fx))as | b(x)aF(x) = \ b(x)f(x)dx = G, (f(x))= G, (f) = °
G1 1 1

Rn Rn
= E(X),
where B(X) =8 = 212%%x, R*a bx)=3"12%, r¥** ; z = 3%z,
2 € Rm‘k, Rm‘k is the set of real n x k matrices, T |is the

transposition sign and b(x) is a sample value of B.
We will comment how to calculate Go(t )» Gq(f) in the case
of the following shapes of f:

20) £, = £(x) = (21 60)™2 exp - (2 627" lIxll %;
(fo is the density of n—dimens‘nal isotropic gaussian distribu-
tion of x; ||xll is the Euclidean norm of real vector x, X €
e R%);
a) £, = £,(x) = (2M7"2 (qetX) M exp (<27 < K (x - a),
x -a>),
(f, is the density of n dimensional normal distribution of X

with EX=a=28 B8 ¢cR, X=28+3 p =N R) ie.
where < .,. > denotes a scalar product);

f, = fz(x) - {

(f2 is the density function of n-dimensional uniform distribu-
tion);

az2) (Za)-n,xecv-{xzv-a< x< al.

0, xgc, x, aeR', a=(a, 5 ainip, By

r(iv + ) -lw+n)
2/2 73 (. +0™" x‘X'B:) A
() I‘(‘l‘,‘\))det‘l x

(f3 is the density of multivariate t-distribution).

a3) f3 E f3(x)=

’

In what follows we will use the following meaning put to the
symbols A, B, X:

a=2"3%, B =ax;

X 3 (%, 3 = (R®, %)%
R

where U is a space of elementary events, ¥ is a &- field of Bo-

rel subsets of ‘U, ¥ - is a ¢-field of Borel subsets of Rn;
R

o
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G (£) = 6= | Axe(x)ax
R
is a function G of function f.

The purpose of this paper is to describe an  approximation
method of values of G and to comment how it should be used for
densities other than the densities fo' £1. We will also com=-
ment on the use of approximated values of G for two different
densities in assesing a sensivity of expectation of B on the
change of density from, for instance, fo' into fz.

The proposed method seems to be attractive from numerical
point of view. This does not mean that it cannot be refined or
improved. It has, moreover, serious limitations, It can not he

used, for example, in the case when A = A(x) = (£ + c1)” 12"
T
x'H_=x . 2
R, 3 ¢c=k—2—, H_ =1-2(22)7"2", n =2(z%2)"%",
o 1
X Hy x
In the next section we will describe a few wariants of a

method of approximation for G(f,) = G,(fi) valid for any, nonneg-
ative scalar locally integrable in R", function f(x) ful-

filling the condition llilm lxi* £(x) = 0, a>n +1.
[Ix[] ==

d

2, APPROXIMATION OF G(f)

There are known exact analytical expressions of Go(fi)'
G(f)) = G, (£,) if £, = £, (x), 41 =0,1.

There is no exact expression  for G(ti) if A 1is more complex

(for example if A = A(x) =(% f‘cI)-1z1 and G(fi)- j A(x)fi(x)
n

R
d x) or/and i >1, In such cases there is a need for an appro-
ximation of values of G(fi)‘ In this paper we will 1limit our
attention to the case when A is not a function of x, 1i.e X

A=Ae¢ kan. We represent A as:
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ay
Let f be a nonnegative real scalar function defined on R and’

locally integrable on any bounded subset of R?, and let it ful-
£111 the condition

e1)  1im Ixl®* f(x) =0, o> n+1.

X||= oo
A set of such functions f is a linear space L a on which it is
easy to define such an operator G that
Laaf-G(f)eRk, (1)

where

ate) = (§ <ay. x> fx)ax, ...,

| <a, x> £x) ax)" (2)
Rn

and

Gl(f)- S <a1,x>f(x)dx, b Bl 7 10
R0
£= g, £/ £y 30 0ney

From (c1) it follows that for any € > 0, fed
ists such positive real number me.(t') > 0 that

a there ex~

lxll > m_(£) => Nxll™ |£(x)] < €

holds.

In order to find a ray me(f) of a ball: %B(x, ‘mt(f)) one
should:

- to fix € (for example € = '10-3);

- to fix f (for example f = £,)1
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- to solve in x the inequality [|x||®| £(x)| < €, 1.e, find
x" that flufills for a given g, f the equation "x"‘l f (x)=¢€
(for example ||x||1° f,(x) = 073, a=n+1=294+ 1);

- to set m (f):= 1=*Il,

Since (3) is equivalent to the implication

€
llxll &=

then, due to -

‘

lxll > uc(f) = lxll | £ (0] <

|S <a1,x>f(x)dx|.s S|<al,x>f(x)|dx<

Rn

sS Na Il x| £Cx)] ax (5)

Rn

Denoting the upper bound S Hallj < lxli |f(x)|d x of G(l)(t)
L :

R
by 5(1)(f) we can write for 1 = 1, k

NI § a0 txi eaola x +

x < mc(f)

r
+ Y llag e x| £ a x, \
Ixil > me(f).
Hence

é‘(”‘(f) & me(f) lla,ll S |£x)|ax +
x| < m (£)

(5)

+ € lla,ll —_—
i Nall @ = 1

lxll > m_ (£)
By the theorem about the change of coordinates one can de-

note a system of spherical'polar coordinates by & and the Ja-
cobian of system @& by J (). The determinant of J(&) is equal

det  J(@) = ™' cos B, cos?d «e., cosh=lg~,
2 37 n

Hence the upper bound of 5(1)(f) in (5), denoted here by
5(1)(f), is equal
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Epy() = m (£) lla,ll | £ ax +
lxll € m (£)
@ 211 J/2 . T/2 o |
+ e llal S | i { amricos 8y oes  (6)
m (£) 0 = J/2 - /2
cos" e . ae ., ..., a6, a8 dr
denoting

/2

i

W= 3w Moy snvy xn_zs " = S cos™ 6 d 6,

0

i=1,n~-2

and using properties of w,; we obtain

B(3) E(23L) - n o+ 1
"2
» (n=2)11

where E(q) denotes integer part of number g and where (n -
=2t = (n - 2Y(n = 4), ..., 4.2,

Thus

& - I S | £(x)]

G(py(£) "'c(f) lla, f(x)|d x +
lx)l € m CE)

2"'12 £ )n-a+1
¢ flagll C(mc(£) &
a -n+ 1

From (7) it is seen that in order to determine a value of 1l-th
component 5(1)(f) of vector-valued approximate € (£) one has
to assign, some numerical values, to m(f) llayll, n, a,
€, % and to calculate the value |f(x)f

llxll ¢ m_(£)
one of known algorithms of numerical 1A;egration in the ball

B (0, m (f)) with the center 0 and radius mc(f).

Under the notation

dx by using
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E-’l z.’.‘.tl'
), B |
(@ =n =1 = 2)11(mg(£)*™"

\
we can write (7) as

€ =

E(”(f) - Ilalll (me(f.) S lgx)la x + €)< » (7a)
lxll < m (£)

If we want to make the radius mc(t) of integration ball .3(0,
me(f)) to be dependent on the values of n and a, then we as-
sign to € the value eﬁ satisfying

75(3), B(3-4L) )"

52‘ ((a-n-1)(n-2) 11

and replace (7a) with

z!s((ml.}(f) = llal (m () S l£x)la x +
o lxllg m o (£)

G

o

+ (m (£))PH (7b)
€
]

Since

GLE) = (G(q)(E)s vens 6(1)(E)s vuuy Gyy¢E))'

therefore, due to (7a), (7b) we can determine two approximates of
vector valued function G(f). These are

GEY = (8qyCE) cony &gy (B wens iy (D)
or

§ 9 e (B eicc 0, 80, BRI

For the approximate G(f) we have the inequality

RIS
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lotoll < Nall(m ) - §leeolax+
llxll € m (£)

a (mleey)R T4 1 (8)
and for the approximate 5(0')(f ) we have
lete) < Al (m , (£) S l£(x)| a x +

o Ixl € m  (f)

o
1
Yiges, (10 P) (9)
£

In searching for a good upper bound of G(l)(f) or G(f) up
to now we have left aside a problem of fixing such a value of
m that will minimise the range of G(l).(f) or G(f). Because we

,treat A as functionally independent from x, the only functions
that are easy to be minimized are

V() = ine. {mc(f) / Slf(x)'dx +
m. (£) e M xll g mé.f)

n-a+1
+ (mc(f)) }

where M= (m_(f) : (lxll > m (£)) == (xII® [£x)] € €)1}

or

v (£) = inf {ma(f) S |£(x)| ax +

€o m,eM, €o a

£ K x|l < m (£)
# (m “(f))n-aﬂ}
o

where

Mo ={ma s (lxll >m ) = (ell® [zl < &2)},

hO 80 EO
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and

One can formulate the following problems:

* -
pl) find m’ = arg Vrc(t), where we(t) & Cr; mc(f)):
p2) find m“a = arg ¥ (f), where ¥ oflf) =Y a(t, mea(t)).
EO EO to sO o]

Fixing @ = n + 2 and denoting

R = Slf(x)l d x, S le @) ax
€ Ixll € m ! T Ixll< o®
o

We can write down

“‘e“)"“‘s Pogo 595"

E a m o
£ € € o €
o R Sheg o
hence
. -1/2 1 1/2
m, ® (¥ ) ’ ve(f) 2(F,)
€ €
* t. =1 1
'y w(r, DTV2 0w ce) = 20, V1A
€o e o %
o o
-1/2 ¥ o &
1f m_ > (Fms) , then mE ms and ‘Pe(f) meFme +
+ m-1.
~1/2 i -1/2 =
If m. < (F“‘c) , ‘then m_ (Fms) and ?E(f)
= 2 (F )1/2.
ot 3
-1/2 *
M m, > (R ) , then m" =m  and v (E)-
£, & € > £5
o
=m. 7 e
sa m 4 * mea.
(o} Eo o
308 R A d B )'1/2, then m' = (F, )‘1/2 and
E @ £ a
(o] EO (o] SO
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e macr 2R

£, &

o

- Thus we can better approxirate G,(f) or G(f) if we use as

values of integration ball radius the values m: or “"a. .
€
o

For this pair of values the inequalities (8) and (9)will pass
into the forms \

leterll < lall v (£) . (8a)

leorll < llall w (£) (9a)
o

The norms in the above inequalities are Euclidean norms. In

replacing these norms with the supremum norms one should rememb-
er about preserving the truth of implications analogues to the
implications (4)-(9 a). In choosing a it should be remembered

that the following inequalities are to be hold

i1) a>n+ 1 for fo(x), f1(x), fz(x), .

i2) v+n>a>n+1 - for f3(x).

3. APPLICATIONS

The approximation method from § 2 (described in a few ver-
sions in dependence on ways of calculating values of integration
ball radius) enables calculations of values, of vector-valued
function G(f). 1In statistics and econometrics G(f) may denote
expectation value of vector-valued estimator, predictor. For. in-
stance, A = A, A, are two versions of shapes of A and

31) Ay X =B, where B = (z°2)" 2%, a=(z"n)7' 2T,

Z ¢ Rm‘k,
j2) A, X =X, where % =2 = 2(2% 2)”" 7x, A, =

= 2(2%2)"! 2%,
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The estimator B and predictor X' are well known in the con-
text of statistics and economefrics.
The described (in § 2) approximation method enables to cal-

-

culate, for example,

-~ » ~ ( -
k1) values of G1(£1) (61'1.f1), v by G1'1(fi), E Y iy

T
Gy k(£4)) "
where &, ;(f;) = [la,| Sn lixll | £, (x)la x, 130 (see§1-2);
; R
k2) values of 31(f1), 51(a)(f1); 1 >0 (see §1-2);

% #~(a)

x(a)
k3) values of &, (f, ) G, (£, ), Gy (fy ), & (fo'i?,
i>0,
where fo,i = £, - fi' i#0.

Notice 1. 1In calculating me<fo - fi) = mt(fo,i) one can use
inequality mc(fo,i) < my (fo) + m£/2(£1)'

Notice 2. Knowledge of values from (k3) helps us to evaluate
an influence of density function shape’s. change on changes in
values of moments of random vector functions where these mom-
ents, by aefinition, depend on this shape. Because the value

£ (x) - £ (x)ld x
lxll ¢ m(e) © 1

cnaracterizes, in some way the distance between two probability
measures P&o) and Pgi), therefore, the described approximation
method can be used in evaluating robustnees of moments on shap-
es changes of density functions.

Replacing £ fj by characteristic functions of probability

measures, i.e. <p§°)(t) = a,o)exp (rety Xd)y = S ei<t'x>p§°ldx),
: n

R
ox) ) (£) =) exp (1<t,15) {Sne“t"" i x), 340,
R
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and using known formulas of regaining moments from Qét) we can
extend the list of possible urages to the class of non-continous
probability distributions.
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APROKSYMACJA WARTOSCI OCZEKIWANEJ WEKTOROWYCH STATYSTYK

Celem artykutu jest opis pewnej numerycznej metody aproksymacji pierw-
Szego momentu wektorialnych statystyk i analiza warunkéw jej stosowalnodci w
badaniach odpornosciowych.

Poszczegdlne wersje metody rdéznig sie w sposobie okreélania promienia

"m" wielowymiarowej kuli catkowania zwigzanego z catka f (x)dx, gdzie

x
f(x) oznacza zadany ksztait gestosci wektora losowego X.

Podaro sugestie zastosowad opisanej metody,

.
'
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