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REMARKS ON BLUS RESIDUALS

1. INTRODUCTION

The BLUS residuals theory (Best Linear Unbiased residuals
with Scalar covariance matrix) developed by Theil [7] and Koerts
[2] is generaly related to problems of estimating the error term
in linear regression models. This estimator possesses the same
correlation structure as the unknown disturbances., This seems to
be important for statistical inference about the stochastic
structure of the regression model.

We have a regression model of the form

y = A8 + q ? , (1)
where under common assumptions:

(a) X is an n:k nonstochastic matrix of rank k which con-
tains the values taken by the k independent variables in n

periods:
(b) lim n'1(x'x) jg a finite nonsingular matrix;
n- o
(¢) the vector of random disturbances, has uncorrelated ele-
ments with zero mean and constant wvariance, i.e. E(u) = 0,

E(uu’) = 0213
(d) 'in addition it is often assumed, that the disturbances
are normally distributed.
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Due to lack of knowledge about real values of disturbances,

inferences about the stochastic assumptions (c) and (d) must be

based on some estimate of u having related properties. It seems
straightforward to treat as such an estimate the vector of the
approximation errors y - Xb where b is given by minimization
of the chosen approximation criterion, for instance ):’.(yi- x’i.b)2
or Ely1 - x'i.bl. The minimization of the error sum of squares
is so far the most popular criterion of estimation, in part due
to its attractive analytical and numerical properties. Using
this criterion we obtain the well-known least squares estimator
of B

b= (xx) ~'x'y (2)
and the corresponding vector of least-squares residuals
e =y ~-Xb=My = Mu (3)

where, M = (I - X (x'x)'1 X’)X is the idempotent n:n projection
matrix of rank n - k.

The estimator of u has the following desirable properties:

(a) it is linear in the dependent variable;

(b) it is unbiased;

(c¢) it has the smallest expected sum of squares of the es-
timation errors, within the set of all linear and unbiased es~
timators.

On the other hand, however, the covariance matrix of this
estimator, assuming that E(ee’) =.021, is given by

E(ee’) = E(Muu’M) = oM (4)

Thus the least squares residuals are correlated and their
covariance matrix depends on the particular X mabrix. This mak-
es the least squares estimator of disturbances less useful for
testing purposes. Clearly e can be transformed to have a dif-
ferent correlation séructure, but due to the fact that 1 - s re-
siduals are singulary distributed (the rank of the projection
matrix M is n - k) wé,can obtain only n - k transformed re-
siduals that are uncorrelated. Moreover the obtained solution is
not unique and the choice of the k residuals that are not es-
timated can be very important. In the paper we try to make some
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»
evidence, about the mutual relations between the basis of the
transfornation and the accuracy of the esimation, neasured by
mean square error (MSE), in the case of outliers among data. We
propose to use residuals mininizing the sum of absolute deviations
to obtain non-biased residuals with scalar covariance matrix, in
such a case. '

2, NOTES ON THE CONSTRUCTION OF THE BLUS RESIDUALS

Suppose that an (n - k) : n matrix C defines a linear
transformation @& = C'y, We will call @& a vector of Linear Un-
biased residuals with Scalar covariance matrix (LUS) if,

(1) E(&) =0 and (11) E(éé’) = 021

The conditions (i), (ii) require only that C’X = 0 and C’C =
= I, _

There exist a few methods of derivation of the matrix >
which fulfill these conditions. All of them require the chojice
of n - k residuals to be estimated. The choice of these resi-
duals is more or less arbitrary, so that the definition of the
LUS residuals is not unique.

Suppose we partition u’ = (u'j v’y), X' = (X’ x',) and c* =
- (C'oc'1) such that the subscript 0 corresponds to the k
components of u which are not estimated and subscript 1 cor-
responds to the remaining n - k cases. This is always possible
by simple reordering of the rows of the matrix X,

We additionaly assume, that the k : k matrix X, is nomn-
singular. The conditions C’X = 0 and C’'C = I,-x can now be
written using the partition of the matrices C and X as fol-
lows,

X
L&)
crx = (¢’ c’y) =C' X *C'X =0 (5)
1
CO
= 1 r ’ =
c’e = (¢’ ¢’ "0 oly * C7yCy =2 (6)
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C, is thus determined uniqualy from (5) and equals,

. - 1
' o
bl LR vr 8 (5a)

where the assumption of nonsingularity of xo is used.
Substituting (5a) in (6) obtain,

-1, =1 :
ey - 4 ’
c'c = C' X X x'o x',c, + C'ycy = S (8740

Substituting X’ X by X'X - X' X, we obtain',
v el i -1
Cf X, (X'X = X] X)) X' ,cp + ChCy o= € X, [(X'X)7 +

=1 - - = '
- (x/%)7'%e (2 - %y T ) TR ) % o) et e (8)

=, [x,(x'x)"‘x'1 + %, (x'0) %7, (1 - x,(x'x)'1x'1)'1 .

. x1(x'x)”x' b 1] Gy i X

1 n~k

Let us put now A = x,(x’x)"x'1 then (8) can be written as
clyla+ AT -2 "as 1) = ;

=c’y (AT +(1 = DTA) + 1)C, =

1

=c' T AT = A (T =2+ (1-2)"R)+

(8a)
+ (1 -a)1 -2, =
=c' [A(I-M"(T-a+R)+ (I-ANT- a7 e, =

-1 -1 -1
c'y (I = a) ‘¢, =C’ (I - X, (X'X)"'x',) C,

! In the derivation the inversion of the product X’X = X1}(1 was  ob-
tained using the following wupdating formulae due to Gauss.
Lema 1. Let A be p :p rank p symmetrix matrix, and suppose that X and
Y are q : p rank q matrices. Then, provided that the inverses exist,

ar ) = a7 eva Ty
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It follows from B8a that C, must satisfy,

- -1
€r Cr - XHEIE) T R Oy e V1 e

Thus C, must be chosen to be any factorization of the ma-'

trix (I - 31.1()&':()"1x'1)"1 and G, is then determined uniquely
-1

1% e

Theil [7], [8] showed that the use of spectral decom-

=7 -
position of the matrix (I - X,(X'X) 'X',)) ' to fina Cq leads to

[ !
from C o C 1X

LUS residuals with the smallest expected residual sum of squa&es.
Due to this additional property these residuals are called the
Best Linear Unbiased Scalar covariance matrix (BLUS) residuals.

It follows from direct multiplication (Theil [7)), that the
inverse of the matrix (1 - x1(x'x)'1x'1) exists and is of the
form,

1

SRR AC IR TSP S S8 A6 Ui B e Gl B 5 1 L (10)

5 -1
where %42 = x,xo &

The matrix I - x1(x'x)'1x'1 is, as a nonsinqular submatrix

of the positive semi-definite matrix M =1 - x(x'x)'ix', posi-
tive definite. Thus, there exists a square orthogonal matrix P,
such that

P(T = X (X' X)7'x,)p = D
(11)

P(I - X (x'x)"'x )7 "p = D7

where P'P = I and D,IJ'1 are diagonal matrices with the lat-

ent roots of I =~ x1(x'x)"1x1 and (I - x,(x'x)‘1x1)"1 on the
nain diagonalz.

On prenultiplying both sides of the second equation in (11)
by P and postmultiplying by P’ we obtain,

(foe x,(x’x)'1>c,)'1 =1+ 22" =pD 'p’ (12)

2 Given the positive definitness of I - x,(x'x)"x, all these latent
roots are positive,
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. The condition (9) can be thus written in the form,
¢’ pD7'RYC, = I (13)
which is fulfilled for the matrix C, gaiven by,

¢, = PD1/ZP' (14)

Let us now consider the characteristic equation for the ma-

trix M, = (I + zz+)""1,

g " =4 = ‘
. [(1 + 2% .) - diI] Py 0 (15)

On premultiplying (15) by I + 2Z' we have,
- ’ = .
[r - a1 - 22 di]pi 0 (16)
and after diviaing by (-d,) and substituting x,xo" for Z we
finally obtain,

[x, %, (x,x "1y - (178, - Mpy = 0 (17)

From (17) we find that the characteristié vectors of I+

- x,(x’x)"x, are the principal components of the matrix x,xo't

This matrix can be treated as a matrix of "index transformed va-
lues" of explanatory variables with matrix X  as a basis of
this transformation.

Since the positive semi definite matrix x1xo’1(x1xo"):1s of

order (n - k) : (n - k) and of rank k or less it has at least
n - 2k =zero latent roots and at most k positive latent roots.
Hence, at least n - 2k of the d's are equal to 1 and at most
kX of them are less than 1.

Taking this' into account we can now rewrite C,4 in the form,

=ig

5. /2 & i
o 1§=:1 dg "7 pypg* E, PyPy

: 1/2 1/2 '
= My g dj./ (1"’1, ) PyP'y (18)
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Thus the transformation matrix C, for BLUS residuals is ob-
tained. from submatrix M,, of the l-g transformation matrix M
by adding k matrices pip'i. of unit rank scaled by the factor

1/2 1/2
a, 1 - a; ) ¥

3. THE PRICE OF THE SCALAR COVARIANCE CONDITION
AND THE CHOICE OF THE BASIS OF THE TRANSFORMATION

The expected sum of squares of the BLUS residuals is, appart
from the factor 02, equal to (T he il ([7h

E[(@ - u)’ (@~ uy)] = 2(n - k) - 2tr¢1 =

k k
C R K - 2n - 2k k3 Rl T EHECETR A

~

Thus it depends on the choice of the basis xo.
Neudecker [4] showed that the covariance matrix of
the BLUS residuals equals the sum of the covariance matrices of

the 1 - 8 reeiduals and the l-s - BLUS differences,

E[(&-u) (& w)’] = Ef(e - ul(e = u)' 7]+

+ E[(é- e) (é- e)’] (20)
where &= (0', 8')’, e = (e’ e’,)' and u = (u'o, u’y) are
the vectors of BLUS, 1-s residuals and the error term, respecti-
vely. '

The problem of the best choice of the basis X° is, how=-
ever, mainly related to the power of the corresponding test bas-
ea on BLUS residuals, T he i 1 [8] proposed to choose such a
basis by the selection of, a so called, permitted set of bases
with respect to the given testing problem, using a minimum ex-
pected residual sum of squares criterion., The "permitted set of
bases" ought to be chosen in such a way, that the basis observa-
tions ought to have "less information value" with respect to the

alternative hypothesis, than the remaining observations. In the
case of testing for serial correlation, for instance, such a set

i\
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of "permitted bases" congists of the bases that contain the
first m and last k - m cases, where O0< m< k. Philips
and Harvey [5] indicate, however, that there do not ex-
ist uniformely best bases for all alternative hypotheses. It is
possible only, by proper choice of the basis, to succeed in a-
voiding tests which have relatively low powers.

In the same work a comparison of the exact tests for serial
correlation based on BLUS and recursive residuals is made. The
recursive residuals are another type of LUS residuals that can
be obtained by using the Cholesky decomposition of the matrix
1 --x1(x'x)"x'1)’1 to find C, in (8a). This type of resi-
duals seems to be specially attractive due to the simplicity of
the recursive computations. (P h i 1ips and Hoa rrv'e y
[5]). The tests for serial correlation based on recursive re-
siduals, are only a bit less powerful than the BLUS tests.

4, CHOICE OF THE BASIS IN THE PRESENCE OF OUTLIERS

The-fact that the LUS residuals estimated only n - k com=
ponents of the vector u blurs the relationship between.residuals
and cases much more than it is in the case of the 1 - s resi-
duals. In certain cases, especially when there are outliers a-
mong sample data, this can have serious implications on the in-
ference based on LUS residuals. In such cases also the choice of
the proper basis seems to be more important.

In the case of 1 - s estimation the effect of the outliers
is spread, by means of the projection matrix M, to all resi-
duals. Denoting the ij - th element of the matrix H =
= X(x'X)"'X" by h,, the i -th 1-s residual can be written
in the form,

ij

e, = (1 =nh,Jy: = 3 n..y (21)
i 1771 gy 137
3, 2
h due to the indempoten H h = h g B
where potency of b ii g;; 1j an i1 2

2 1/n providéd the model contains a constant term.

Hence if h,, is close to 1 a gross error in Yy will not



Remarks on BLUS Residuals 131

necessarily show up in e but it might show wup elsewhere,
say in e, , Aif hk1 happens to be large and it affects all the
residuals. The same effect 1is present in LUS residuals, but now
it is strongly dependend not only on the structure of the ma-
trix X and character of contamination but also on the choice
of the basis. This is evident in sge case of recursive resi-
duals. The contamination of one of basis observations will ma=-
nifest itself by increasing residual errors. This influence de-
creses with n. On the other hand the occurrence of contamina-
tion in the observation used at the end of the recurrent pro-
cedure will influence only the last residuals. From this point
of view the recursive residuals are appropriate for examining as-
sumptions that depend on the order of the cases. In the case of
BLUS residuals the proper choice of the basis when there are
outliers among the sample data is not so evident but also seems
to be more important than in the normal case. Generally the ba-
sig of the LUS-transformation should not contain any outlying
observations.

In order to give some evidence about the possible influence
of outliers an BLUS residuals with respect to the choice of the
basis we make some simple numerical experiments. Each experiment
consisted of 500 replications. In each replication we generated
15-elements sample from the "mean shift outlier model” with giv=
en magnitude and configuration of a single outlier,

Yo Xp t:0, (ac) + u

where ¢, (ag) denotes the dummy variable with contamination
constant a0 in i-th position and zeros elsewhere and u ~ N(O,
o )

The contamination constant was equal 50 and 100 and was
added to the first, central and last observation in sample re-
spectively. For each simple the values of BLUS residuals with
four different bases were calculated and the values of the mean
square estimation errors (MSE) were compared. The bases for BLUS
computations consist of the firs k (BLUSb), the central k
(BLUSc) and the last k (BLUSe) observations as well as the k
observations corresponding to zero values of least absolute de-
viation residuals (BLUS1). The first three criterions were often
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used in literature (see eg. T h e i 1 [8]), the last one is
proposed here mainly because of its robustness to outliers..

The mean values of the MSE over 500 replications for  each
type of BLUS residuals are given in Table 1. This table con-
tains also the fractions of the replications in which the cor-
responding BLUS residual had'#he smallest MSE value.

Table 1
. Mean values of the MSE
Index of contaminated Type of BLUS residuals
obgervation and the -
value of contamination BLUSbH BLUS¢ BLUSe BLUS1
1 50 1.0179 0,5001 0.5929 0.5124
(0.08) (0,412) (0.,172) | (0.33¢)
8 50 0.7014 0.9557 0.7660 0,7783
(0.494) (0.054) (0.288) (0,164) .
15 50 4,1716 5.0073 18,1478 4,3454
(0,552) (0,002) (0.000) (0.446)
1 100 1.8990 0.6486 0.7509 0.,7217
(0.036) (0.490) (0.180) (0.294)
8 100 1.1726 1,7468 1.2292 1.3146
(0.518) (0.022) (0.344) (0.116)

N ot e: Mean values of the MSE over 500 replications of the experiment
for four types of BLUS residuals and five variants of contamination. The va-
lues in brackets denotes the fraction of the replications in which the corw
responding MSE value was the smallest one,

The results of experiments gathered in Table 1 indicates a
relatively high increase in MSE in the case of base-croice with
outliers. This increase depends on the relative magnitude of the
outlier in comparison with other observations. Thus the proper
choice of the basis for LUS computations when there are outliers
in the data seems to be of special importance. The identification
of outliers can be difficult in some cases. Taking this into ac=-
count, the choice of the basis corresponding to zero least ab-

'solute deviations (LAD) residuals seems to be a good choice. This

type of BLUS residuals (in Table 1 noted as BLUSl) can be di-
rectly obtained from n - k nonzero LAD residuals by means of
the C’, transformation. Thus there exists mutual correspondence
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5
between LAD and BLUSL residuals assuming k non-estimated BLUS
residuals are equal zero. \

The system of equations for the solution of the least " abso-
lute deviation problem can be written as,

Yo Ao Prap | \
A _ (22) :

€LAD

where the subscriptsm 0 and 1 refer to the observations with

zero and nonzero residuals respectively.
\

This corresponds to reordering the observations so that the
first k are those lying in the regression hyperplane.‘ Accord=-
ingly X  ‘and X, are respectively k : k and (n - k) : k .ma-

trices. The vector e ap refers to the n = k nonzero residuals,

Assuming nonsingularity of Xo the vector 'bLAD of estimated
parameters can be obtained from (22) and is equal to,

—_— ’ :
brap = Xo Yo v (23)

The vector of LAD residuals is then given by,

= % % -1
em ¥4 x1bLRD = y1 X1x° yo (2‘)'
Given the ordering of the cases corresponding to the solu-
tion (24) the respective BLUS estimator of residuals can be
written as,
-
Yo
A = = = C! =
é=c'y = (c’c’y) C st L 1Ky
¥q (25)
= -1 ™ =
ZIREEL I PR D £ 9'1(y1 = X Xo ¥5) = Clierap
Thus choosing the basis corresponding to zero LAD  residuals
-
we can obtain the vector of BLUS residuals directly from n = k
nonzero LAD residuals. Note that in this case, the information
contained in k non-estimated residuals is not spread into the

remaining n - k residuals, which is the caes for BLUS residuals
obtained from 1 - s residuals.
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Zbigniew Wasilewski
UWAGI O RESZTACH BLUS

L
W pracy rozwaza sig problemy dotyczgce wyboru bazy przeksztatcania, pro-

wadzgcego do otrzymania estymatora wektora reszt m.n.k. o gkalarnej macierzy
wariancji kowariancji, w przypadku wystgpowania obserwacji nietypowych, Za-
proponowano wykorzystanie zerowych reszt otrzymanych w wyniku estymacji mi=
nimalizujgcej sume¢ odchyled bezwzglednych do okredlania bazy tej transforma=
¢ji. Umozliwia to uniknigcie wyboru obserwacji, nietypowych dla bazy, co zna-
cznie poprawia jako$é estymacji.



