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STATISTICAL DATA

1. INTRODUCTION

Belsley, Kuh, Welsch [2] have presented a
survey of methods of detecting and assesing the deagree of col-
linearity and its effects. They have been examining effects ma-
nifested in the behaviour of least square estimator’s sample va-
lues b = T, T=x'x, xe¢ %, be R, verR, where
R™"™ is the vector-space of n x k real matrices, R' is the
vector-space of l-tuples of real numbers over R. The term "col-
linearity” has its origin in geometry and in fact is most often
usea for two vectors (points) only. Two vectors x , = (x,, X,),
x,, = (x,,, X;,) are said to be collinear if they lie on the
same straight line L (so x ; and x, are co-line points). The
collinear points x ,, X, , need not point in the same direction.
Taus if x4 1is collinear with x ,, them (-x_,) is also ccl-
linear with x ,. In the case of X 40 %X ,€&XC R’ the term
eollinearity is well placed in our geometric intuition. Even in
tnis simple case it has its algebraic counterpart, i.e. two ve-
ctors Xx 4, X , € Rz are said to be collinear iff there exgst
two reals 8,, B, € R such that B4X.q * By%X 5, =0 under B +

+B§>0 or if x , can be expressed in terms of X, 5 in the

B
form x'i--i% x , under 8, ¥ 0. It comes from the state-

*Lecturer at the Institute of Ecomometrics and Statistics of the Umi-
versity of Lédi.

[77]
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ment that x_ , is collinear with x , 1ff x f = 0 where X =

= (X, X,5) € g%, g (Bys By) € r¥*¥! o g%, 1i.e. LEf x4, L B,

x, L1 B, where Xy, = ("11"12)' xé_ = (x,, X,5). The equation
2

xB = 0 can also be written as F Byx,, = 0 under B? + Sg > 0.
=1

It defines linear dependence of vectors X,q¢ %X, In R" a set
{x.j ¢« R®, §=1, kl, X4 (x1j’ ot xnj)' is linearly depend-
ent if there exist scalars Bj' ij= 1, k not all zero such that
f Bjx 3 = 0, 4i.é. the null vector is a linear combination of
bl j

the vectors X 4 j = 1-,—1 In general a n-dimensional vector y
is said to be. lineary' dependent on a set ({x g y = 1-,—-1() of n-

Kk

_=dinensional vectors X, , ..., X, ify = 21: Bjx-j' A set b‘.j'

3 =1, k} of distinct n-dimensional vectors 1ie on the same
straight 1line if there exist k non-Zero coefficients £,, ...,

k k
B such that B.x ., = 0 and B, = 0. One can also look
k B e = 3
k
at the equation ) Byx,y = xB = 0 from another point of view.
=1 ¥
Denoting xi_ = (x“, ST xik)' i=1,n we can write xB = 0

as
X, 8 :
xB = P ety [ e A L8
x' B 0

where each i-th scalar equation xi,S =0, 1= 17—k, defines an
i-th hyperplane. These equations also tell us that Xy, I T S, 5K

= 1_,— However, if Xy, L B, 1 =1, %k, where B is the vec-

tor of coefficients of linear combination of vectors ‘ x.jE(x.j)j):‘_
that defines the vector 0 = zij.j' then in the case of equa-
tion ¥Y=xf +E we obtain Y =8,

Sso for those values of B that are +the values of coeffi-
cients of linear dependence between X i, ..., X, Wwe obtain
null-explanation (zero effect in equation) of Y in¥ = x 8 + 2
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by factors X 4, «eey X 4o This means that 8 IO{_zyich X8 = 0
or, putting it 1in other words, x4 B for {1 =1,k is a' pa=-
thological point of parameter space from the model specification
point of view. Therefore, if the sample value of b is approximate-
ly orthogonal to each row xi. of the matrix x, then the po-
int b is suspected to be a pathological point with the null
. explanation degree. The point B € Rk; ¥ = 0 can always be re-
gained from the matrix (x = X 4, «ouy X, ).

One can distinguish two ways of regainina B : xf = 0 from
x. The first way is based on the definition of singular value

1
Ai/z 1f' matrix X; " i1.9, i

xp 1) = 172

i
where B = 8‘1) 15 the singular (eigen) vector attached to the
singular value_ Ajlz. It is known that for x1/2

i =0 we have
Al/z B(i) =0 =x 5(1) = x B. So the components of eigen-vector

of the matrix x (or xx) are the coefficients of linear combi-
nation defining the null vector. ;

The second way (see par. 2) of tegaining is based on a ge-
neralisation of angle (cosine) definition of dependence between
two vectors.

Both ways (see par. 2) are enabling diagnostics of existence
and degree of bad conditioning of the data x and (y, x). 1In
this place we should explain what we mean by the term "bad-con-
ditioning of x" in the context of linear models. We assume that
the data ye R" are generated according to the following linear
mode 1

be nxk

wMpai = (R™, '8, 8, v=x8+8, k <k, vx>v;, n

y Gt

o

2
Py = NY CxiBy 2 053y

where
8= (U, F, P), P(U) =1 4is a complete probability space with

a space U of elementary events, a borel o-field F of subsets
of U, a probability measure P;

8, = (R, P ont Pydr P (RY) = 1, F o is aborel o-field of
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subsets of R" and 8y 1is a complete probability space induced
YNYcs B8 5
ty ’
k, = rank x, n = rank (py = E(y - eY)(y - EY), E is an expec~-
tation-value operator;
PY = NY(xB. 021) is the caussian measure of probability of

random vector Y with moments EY = xf, Dy = 021;

A‘fz(xi x'(z(x)

= _nax oot

N ‘1/2(x) A1/2(x) is an index of bad conditioning of
"min 1

matrix x equal to the ratio of the largest singular value xl/z

of x to the smallest singular value x;/z of ‘X v: is

a threshold value of Moo enabling the distinction of bad and well
concitioned matrices x.

For semiorthonornal matrices Ve l. For matrices with ko <
o - ©. These two situations are extreme ones concerning
extrenely well and extremely badconditioned matrices. For usual
cases " _ € 71, [, However, the author does not know how to
fix the value r; in a proper way. One should derive this value
from a given optimisation criteria for estimatcrs or predictors

or tests. Problems of unigue determining of v¥ with respect to

X
a given criteria of statistics evaluations are open. The pre=
sented above ideas of detecting and measuring bad-conditioned

data from the point of view of estimation and predicticn theory

have been treated in the works of e 1'g 2 8y, K u h,
wevachs (23, “ediae. 0], wiTlve L7 X e n-
dai-l [6]; silve'y [i10].
2, DETECTION OF LINEAR DEPENDENCIES IN DATA
Extremely bad conditioned data x will be called further

collinear data or multicollinear data (or data with linearly

depenvent columns {(vectors) (x j}§-1 of x).
The main goal of this section is the studying of the linear
Jdependencies between the vectors from {x.j, j = ff_k} in the

sense of linear algebra or in the sense of multidimensional geo-
metry and detection of the number and structure of these linear
devendencies.
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2.1. Detection Based on the Definition
of Singular Values and Vectors

We recall that

= /2 - 1/2
xv.j A i u:j, X ;2; A 3 é.jv~j'

where A1/2

is a singular value of x, Aj is the j-th eicen-
value of x'x (or xx'), u

i is the j-th eigen-vector of xx’

X
connected with A\ For 172 = 0 we have 2% VX4 = 0. This
i=

k% i

equation displays the linear dependence between vectors from
{x i,} i = 1, k. The vectors involved in this dependence should be
displayed by the nonzero elements of v .. Suppose that singular

LS TR

values have been ifcreasingly ordered as A: ...Ak

- (Y3
2
(two linear dependencies) connected with two zero singular va-

lues.

The indices of nonzero elements of vectors corresponding to

= 0, then there are two linear combinations of vectors

zero eigen-values should display the indices of vectors {x_j)
that are involved in these linear dependencies.
The following examples are instructive in this respect.
Example %

; A (N G o o
0 By v 135,10
03 3 =1 4=5

X = Fiil R o = 2R b Sl e ST ¢
O il sy 3 1 2" 6 4 5
0755 B > 0
00 056 LRIVl O

Using Jacobi method or singular value decomposition method one
can find eigen values )\ = b equal squares of singular
values,

Ny =il Az = 1,978, A5 = 199.9, A, = 1,289, Ag = 18.72

3 4

N I TN

6
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So singular values for A, and i, are equal
W2 = 2
A 0, A, 1.006, A, 1293%
Eigen vectors corresponding to these singular values are

v, = (0.816, 0.408, -0.408, 0, 0, 0)’

.

Vo, % (-0.556, 0.564, =0.547, 0,272, =-0.006, -0.003)'

v , = (0.089, =-0.092, 0.085, 0,524, =0,578, =0.607)"

4

By knowledge of ways of constructing x we knéw a priori
that there are two linear dependencies. They define x , and x ¢
so rank x = 6 - 2 = 4, There is no clear cut confirmation that
the;e are two zero singular values (A;/Z is obvious case, but
A;/z and Xl/z are almost equal and different from zero). The
conclusions that follow from Ay and v 4, are confirming under-
lying scheme because 0.8x , + 0.4x,, - 0.4x,5 + 0x , + Ox . +
+ 0x . =0 ¢=> 2x , *+ X 5 = x 3. From the entities of vector x 4
it is seen that more probable is a diagnostic based on v , i.e.
the first three coordinates are approximately zero, but we can
do it on the ground of a priori knowledge of x o = x , = X c.
Lack‘of this knowledge makes this step very undecisive. Even
with the a priori information we can only say that the under-
lying scheme defining x,. is fulfilled approximately (5.2x‘4 -
- 5.8x, . ¥ 6.1x ).

5 6
Example 2,

(T e e O
1 2 0-1 2 0
/ s [ VR S AN K | X 3 = 2X 4 = X 4
R S ot S N
J 5 5=3 3/-1 3 L™ Eg* 2x.3
\ 1 B =4 =3 -2 D
372 o y28.6, AM? = 40,01, 21/% a2 19,05, 21/% g,
1 2 3 4
il = .38, x;/z = 0;

v,, = (0.943, -0.236, 0, 0, -0,236, 0)’

~

v.g = (0, 0.41, 0,82, 0, -0,41, 0)
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The results obtained in Example 2 are correct as far as sin-
gular values are concerned (there are two zero values as 1¥

should be). However, the corresponding eigen-vectors Vo4 and
v.e for Al/z and A;/Z are introducing doubts whether in the
case of matrices with two or more linear dependencies between

some columns there is a possibility to detect the appropriate .

columns entering the original linear dependencies undarlyihg the
scheme of generation for x. For instance the nonzero elements
of v,, (i.e. v, Va4r V54) are only partially correct. Ful-
ly correct vector should have the elements Vigr Vpq and  vg,
different from zero. Similarly uncorrect results have been ob=~
tained in the case of V.g*

Is the malfunction of code of programming responsible for
these results? It needs further exploration. However, similar
results have been obtained for other examples with two linear de-
pendencies. In the case of one linear dependency the identifi-
cation of original vectors entering the original linear depen~-
dence was correct. However, this diagnostic of number and the
structure of linear dependencies can be spoiled by not extreme
though severe bad-conditioning in x (or x'x). For small rance
vectors almost parallel between themselves it is likely that we
will suffer in regaining the original schemes of linear depen-
dencies between columns.

2.2, Detection Based on an Extension of an Angle Measure
of Dependence Between Two Vectors

From analytic geometry and linear algebra we know that the
following scalar function

<X, X i > vy .
¢4y = cos X (x.i, x'j) = %0l T, 7P 5, (B g TP 13 €h!
3 lx g =/ 3 <2
- - X > = R X - X
% Mg PR R MR B By !
defines cosine of angle between two given vectors x.i, b3 g b i, S

is obvious tahat

—— AL S
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cyq € Cs¥ . 113

X 44 X 4 = L7 e 0;
x_illx.j > cyy - 1 (or Cyy = -1).
no
In angular terms L 1 x.j &> o =1 S 1. +1, 43,

)g_ill-x.jdaba=lfl1°, 1 =0, +1, + 2,

For appliea econometrician or statistician the measure c1j
is also attractive when there are linear relationships encom-
passing only two vectors in each relation,

Now we extend this approach to the case when there are li-
near dependencies (possibly more than one for given x) encom-
passing in each relationship more than two vectors of matrix x.

As before let x = (x_,, oiviap x_k) be an n x k matrix or ' a

linearly dependent system of vectors with the vector x.j defin-

k
<,
ed as x g E;ﬁ %, . We remember that c,, = cos (% 40 x_j)a

SX g0 % > e
W T g AT T

By definition of x j we have

k
L O DN T

<% 50 X > = )
= -— - = 2
T 01 I e ks o B E b
and nence
| =
€43 Ix L li
- <x_i, ERR e 1 aj_1x.j_1, uj+1x.j+1 ».%» Qkx-k> (1)
x, i

Introducing the following notation and formulae



Bt

a®

o

Putting

" one can t-mom (33 to
= ¢<T’d‘{) R 4 G(‘j)“"’.f

3)6(3)
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we can write the system of (k-1) equations in (k-1) unknown

(3) - B 1¢#3, i.e
o for given X5 1;10(1"'1' . .e.

SRR RAPREP L. b SO T ¥ (6)
This linear system has solution

BRI gphdlynl ¢ (7)
T A L T

For numerical efficiency reasons, if k is fixed (so one
does not need to study different model specification), then it
is sufficient to consider j = k.

So it suffices to find

From a(k) we know that the index k (for which the linear

k
combination X, = N ayx,;, k # 1 can be regained) is the in-
1=1

dex of x, for which the linear combination was constructed.
It can be seen from the following examples
Example 3.

%
]

2 1
gaally AT x'z/2=/2.4', x;/zs\/u.s';
2

¥ X.g¢ V'.1 = (0, 1, '2)’—

N oW N

X.3=

-1
denge Ox 4, + 1x , = 2x 3 =0 = x5 = 2x,3 Or X,3 =2 X 5.

So zero-eigen-value ana corresponding eigen-vector approach, if
there is no bacd conditioninc in the data x, enables us to iden-
tify existing equivalent linear combination of vectors defining
given vector x j (i.e. x,, = 2x,, or equivalently xg= 2- x_z).

The minus sign of the third couponent of v, indicates that X.3
is linearly related to x ,.
Jsing our angle approach we obtain
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(
1 0.872871 0.872876 cos0®  c0s29° cos29°

c=| 0.872871 1 1 = | ©0829° cos0®° cos0® |,
0.872876 1 1 cos29° cos0°  cos0®

By using (7), C, x we can calculate

(3) 1 4.8989 -4.2763 2,1382 \, 0
o = - =
49030 Vi g 2661, . A TArY 2,4495 )
or
(2) f 2.4495 -2,1381 4,2762 0
o = e———————— = .
2.1825 \ _3 2659 3.7417 4,898 2
(3)
Hence, due to o we can write down
=0 + 2" = 2"1
X.3 X4 X,5 X,
or due to a(z)
X, = 0x 4+ 2x.3 = 23.3.
k
By definition % {. 12-31 wyX,y we have ayX j+a...+ LT +
1#3
- 1x_j + ajﬁx_, 41 oo topx =0 and hence the extended

(full) form of aéj) calculated according to a‘j) from (7) is

equal (in the last example) ué3) .

(2) (2)
a "', ag

= (0, 27, =1)" or according to

= (0, -1, 2)'.

It is seen that both singular values and vectors approach and
extended angle approach enable us to detect linearly dependerit
columns (vectors) from X. > ©

Example 4,
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Xjq ™ X,4 =%,
'y A2 /B398, A2 =0, 22« Vo847

Voo™ (-0.577, 0.577, 0.577)'.

N & N
-
w

w
—
N

1 Q) 1

According to singular vectors approach we have x , = X , +

+ x4 oOr equivalently X,3 % X,q " X5, According to our angle
approach we have

1 0.9432 0.9861 ' 0° 19°%18"  9%32
Cc=| 0.9432 1 0.8750 |, arg c = | 19%8" 0° 28%8" |.
0.9861 0.8750 1 9%32° 28%8° 0°
Using (7) we have
J08Y _ of 5831 rr.ee\TY  fReRY Do ke
5.499 2 \ 3.50/ -1
and hence
L Vel St P

So the results of detections made by singqular vectors ap-
proach and our approach are correct.

Due to simplicity of calculations within our angle method
(it needs only stable inversion method used in finding the in-
verse matrix (D(j))-1) and very imaginative angle evaluation of
degree of dependency on the ground of C and argC, our method
seems to be more preferable in practice with respect to singu-
lar vectors method (where numerical complexity of calculations is
greater). :

It is obvious that deeper formal and numerical studies of
relative efficiency of these methods are needed, i.e.

a) for what special structure matrices x the relative nu-
merical efficiency of both methods are the same,

b) whether k = 3 4is enough for the relative numerical effi-
ciency of angle method to be greater (if X is not a special ma-
trix).
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2.3, Detection of Two Linear Combinations
of Vectors in the System x = (X 4, ..y %)

In the situation of two linear combinations in x we have

-1 =1
XK, = a, X X, = a X
3 1;% ey g LR veg+1 Y Y

From the definitions of x

o3 and cij we have
d.(tj) = le'jll ¢y = msj)c11 x4 Il + ctg:nc12 lx 0l + ..o +
v o] i gloygugiy Bmobydre
and similarly for X xr € 4x ve have
af®) = izl oy “353 O, gt I gl Hones

Ay ' =
i jk_»‘ c.’.,k-1 “‘x_‘ k“” ’ 1 j + 1l k 1

Denoting
a0 = ek, AN i, SRS (%) . LR 5.0
j \ (k) K
el /"jﬂ.jﬂ R e
D(j) = | : o D(k) = : .
~ k k
d§3%,1 oo S2{,3-1 dﬁ-?,j+1"' ﬁ-ﬁ,k-1
where dii) -c,y le_1 l, 1,1 =1, 4=1, 1= 3+1, k=1, we can
write
LA DAy
(8)
p(kI (k) 4Ck)

1f det 037 4 0 ana det DX) 4 0, then
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o3 _(D(j))-l d(3)

oK) _,(D(k))q ak)

(8a)

(k)

where a(j) and a are the vectdrs of coefficients of linear.
combinations defining x.j and X ..

It is obvious how to extend (8a) on more than two linear com-
binations in x (if k is very large).

From (8a) it follows that if a j), ol # 0, then there are
two linearly dependent relationships (combinations) with coeffi-
cients given by the components of a(j), « k). If only a(j) (or
u(k ) is different from the zero vector then there exists only
one linear combination.

Example 4.

TR e R S
e L T e
X = X ¥R
gal 3 1 2 k.8 iy R !
-1 1 =2 4 6 X, = 2% 5 ¥ X 4
R A TTRST O .
\-z I
A2 = /59.27, 2,/ = /E.5s, Tk, r/4ea,

LRy

vy = (-0.620, 0.468, 0.620, =-0,076, +0,076)

Visa £ (0,209, 0.703, -0.209, 0.457, =0.457)",

It is obvious that in this case detection of first linear com-
ination is easy. But the second, although still is seen, is
only secn relatively.

The matrix C is given in lower diagonal form as

1 :
0.4201 1
c=| 0.9075 0 1
0.1446 0.6025 =0.1195 1
0.2631 0.8141 -0.0869 0.9539 1
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and
oo
65%16¢ 0°
arg ¢ =| 24%84’ 90° 0°

81%9’ 5295’ 96986’ 0°

74975+ 3550+ 94%s8* 17%6’ 0°

\
We leave to the readers further simple calculations connected with
finding solutions according to (8a). )

3. SENSITIVITY OF SOME FUNCTIONS TO LEVELS
OF BAD CONDITIONING

For running linear reqression empirical models as some gene=-
rations of given statistical data (y, x) 1t is good to know what
is the influence of bad conditioning of data on sorme statistics
(estimators, predictors, tests ).

We limit out attention to the most popular linear models with
the main stochastic equation

Yy = xf + 8 (9)

and assumptions

RRERTS, B € R (9a)
2
I e Tt s By (9b)
= E
where
B has normal distribution with the first moment Z = 0 and

second OB = oI, Sample values of Y, 8 are denoted further
by y, &. It is interesting to measure local behaviour of some
functions by the use of classical derivatives of these functions
with respect to their arquments.

First lat us propouse some working quantities. These are

A
axr

= 2v_ X V.

si’r. (10)

s i
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where
Ay is i-th eigen value of x'x,
v_1 is 1-th eigen vector of x'x corresponding to Ai,

vy is (8, 1)-th element of V = (V ,, ..., Vigle VIVavW's

= k)
x;' is r-th row of x;
Ak
R e = ’ '
VeV T Mg = Apya(x x)s A = Apa,(x'x) (11)
EAY = -2 ’ = r =
B, " 2N O Vo " M%)
rs
- -2 ' — ’
2 27° (v, Vi Akvs1v,1) X, ~or due to (11) (12)

= - ’l - '’
2. kg (NN =¥ vB1V.1xr)

LY =1 -

o, 227y x(v v o = yw v (13)
Y = Vel '

ax = 2 A x (V V' = W,Vi,) (14)

The above formulae have been derived by the author for the
purpose of lecture notes on "Time Series Analysis” during the
years 1982-1984 at the University of nédZ.

They have been derived thanks to other indispensible formu~
lae given by Graham [4], Dwyer [3], Neudec-
kgl [Blys Ba Yes g a=117;

It is interesting to know that

1 = =
x =0 &> vsi 0 or X 1 V'i or
rs
s, 1=1, k
(Vi'-'O,x Lv.i){ o ’
) o i BEARE
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ar
= i b () il
ax ° vs

= =0 or (¥r:x LV, ,) or

i

(Vg =0, Vrax 1wy,

g, 4=,k

A

i b

7% 0 &> (¥rs X, 4 V.i) or (V-iv-i 0),
r=1,n

x# 0 { S o
i=1, %k

v A b

e 0 &= V-k V_k =\ V.1 V.1,

AY £l

ix =0 &= ¥r: x L (vgV, -V VgV.)) or

/

-1 :
(Vu ™ ¥V Vo Vou¥,q 1€ Eu< k)i

v, AP 4
W__ 2 = (v 0) (v =Bk _r k)
22 =y = or v T — or
Mre . (BT Var XV
g L A T L R

For regression diagnostics one of the most important results
is that for each x, v ¢ [1, o[ we have

JE'E
v

= 0, E=Y - xB, B s (%720 Tx'y (15)

The relation (15) tells us that the behaviour of E’E, e’e,
(E’E) (n - k)"‘, e’e(n - k)'.1 does not depend locally in the
neighbourhood of v on the degree (level) of bad conditioning
(measured by » = ).kAT’ ). The same is true for each particular Ay
il.e.

E'E .0 wimi,k (16)
oA, :
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Another very important diaqnostilc measure 1is defined by

IMSEB _ _2,-2 . % (17)
A i
i
where MSEB is the mean square error of estimator B,
The following formula relates the local sénsitivity of MSEB
to tne level v of bad conditioning of x'x:
1 2 ~1 =2 -1 2

2/,=1 -2
- 027" v -o(Ak—A_'v) (18)

dMSEB _ 2

T

The quantities %¥§§§, 3%€§§ are attractive for the purposes
i
of simulation studies of the influence of bad conditioning level

on the precision of B. 1In practice we do not know 02 and the

only knowledge we have is Sg =(n-x)" E'E, i.e. an estimator
of 02. Replacing 02 by this estimator we have sample estimat-
es of above measures (see (17), (18)). These can be used as ap-
proximate characteristic of sensitivity of least squares esti-
mator’'s precision to the local small changes of level v of bad
conditioning. i

It is obvinous that for ideally conditioned data (i.e, v =1)

we have gﬁ§¥E = 0 and that for each 02 >0 and v > 1, the
function 1!SéB is increasing with respect to v (i.e. dggnn >0

always if v > 1, FLEN 0).

In the case of predictor ¢ = xB = x X% 'x'¥, %= x'x, by
using SVD ideas we have two cases.
1. The case of Y = x $'1x’v, Y not treated’'as function of x.,
K

y = i¥1 v ,u.y (19)

U, = the i-th golumh of U, i.e. the nxn matrix of eigen-vectors

of “x.%%,
It neans that

> Tl ¥v, x (19a)

2. The case of ¥ = xB = xg + xX 'x'E, -where Y = x8 + £. 1In
this case



\
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g 1/2 ’ ' -

Y = A u . v' B+ é& u . u'.g (20)
121 i b M | =1 -1 i

o A4 =142 : AR LIS (o Y 3

AL Pt UV B 2200 Vi T vl B 2.ufiuﬂ18

Hence
SRR U T 1 .=1/2.1/2 y
dv L. Au vy Bt 3V AT u vl B (21)

It is obvious that gg = 0 (the predictor Y 4is insensitive
to small local changes in the neighbourhood of value v) Aff
v,y 1 f and simultaneously Vol f. The predictor Y is in-

creasing componentwise function of v iff g% 2D i.e. if

u, > Tl (v, B).1(v,'k 8) e

4, FINAL REMARKS

Due to space limitations we have not presented here details
of derivations for particular formulae.

Tney can be easily completed by readers from the assumed
forms of functions defining Y, B, E, e, B Xi, vV, MSEB,

Our scope of sensitivity analysis is by no means complete.

Outside of this scope we have left, among others, such to-
pics as sensitivity of moments of l-s ridge estimators, predic-
tors, test statistics with respect to Ai' V.
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REGRESYJNA DIAGNOSTYKA ZLE UWARUNKOWANY CH
DANYCH STATYSTYCZNYCH

Celem artykulu jest opis wykrywania liniowych zaleZnodci wg:

a) wspétregdnych wektora wtasnego macierzy x'x.

b) uogdlnionej macierzy katéw micdzy wektorami macierzy X.

Podano przyktady Liczbowej analizy zaleznoei za pomoca metod (a) = (b)
oraz wskazano na wady 1 zalety obu metod.

W paragrafic 3 wyprowadzono nowe wzory uzalezniajgce wrazliwoéé wskazni-
ka ztepo uwwarunkowaniaz od wplywowych elementéw 2z macierzy x, wpiywowych ko=
lumn % oraz nowe wzory uzalezniajgce wrazliwodé stacystyk B, ’\;, E, E'E, B'E

\n—k."_] otaz ich chavakterystyk na poziom zlepo uwarunkowania.

Podano warunki wystarczajgce i konieczne bezwrazliwodci tych statystyk,



