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SOME TESTS FOR QUANTILE REGRESSION MODELS

Abstracts. We present a specification test for quantile regression models. Although
researchers commonly estimate and conduct statistical inference for quantile regression
models, rarely do not check the validity of specified models. We present a test for the
functional forms of quantile regression models. This test add powers of fitted dependent
variables as regressors and check the significance of those added regressors.
Additionally we compare nonparametric specification tests, based on kernel functions
and bandwidth parameters.
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I. INTRODUCTION

Median and quantile estimation methods have recently been applied to
economic models because these methods impost fewer restrictions on the data
than mean regression. The linear median regression model assumes that the
conditional median of the dependent variable y is a linear function of the vector
x of independent variables. The median regression model is particularly suitable
if the conditional distribution of the y variable is fat-tailed.

Quantile regression has become a standard tool for statistical analysis
(Koenker and Bassett, 1978). Although researchers rarely do any check the
validity of specified models. In this paper we present a specification test for the
functional forms of quantile regression models: quantile regression specification
error test. Using the quantile regression estimators instead of the least square
estimators, the implementation of the test is similar to regression specification
error test by Ramsey (1969) and Ramsey and Schmidt (1976). Additionally to
assess the predictive performance of the quantile regression models, we follow
Christoffersen’s (1998) framework, which is designed for evaluating the
accuracy of interval forecasts of quantile.
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II. QUANTILE REGRESSION AND TEST STATISTIC

Let {(3; x; )} fori = 1,..., n be an iid sample from the distribution of (y, x),
where y € R is used as a regressand and x € R" is used as a regressor vector. Let
F,. be the conditional distribution function of y given x. The t -th conditional
quantile function of y given x is defined as

Oyby) = infiy | Fyu(yly) = 7 §.

The (linear) quantile regression model is written as

Ok =x’h(1) as., (M

where 7 € (0, 1) is a fixed and known quantile of interest, f(z) is a k x 1 vector
of unknown regression coefficients. Note that in general the coefficients f(t)
vary with 7. The conventional quantile regression estimator by Koenker and
Bassett (1978) is defined as

A ) 1 & ,
p(r)= gggg;;p, (y,—xb) )

where p(z) = |1 - I(z < 0)l- |z, is called the check function and I is the
indicator function .

When 7 = 0.5, ,é (zr) corresponds to the least absolute deviation (LAD)

estimator. Let £, be the conditional density function of y given x. Suppose that
the quantile regression model is correctly specified, i.e., the relation (1) holds.
Then under mild regularity conditions (Koenker 2005), we have

Vn(B)- @) — N(O,V(z))

where
V(t)=t(1=1)E[ f, (X' B(z))xx' ] "E[xx' JE[ f,, (x' B(z))xx']".

On the other hand, if the linear functional form in (1) is misspecified and the
true conditional quantile function is written as O, (y|x) = 0(x, T )= x’f(z), then
Angrist et al. (2006) and Koenker (2005) demonstrate that the quantile

regression estimator /3 (7) converges to

'I[A] =1 if A is true, [[A] = 0 otherwise
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B (z)=minE[p,(y,=xpb)] =minE[w(x.b)(xb=0(x,7)"]

where

w(x, b) = J: (I —w)f(O(x, ) + u(x’b — O(x, 7))) du.

Therefore, if the quantile regression model is misspecified, £ (z) can be
a misleading estimator for the marginal effect of x on the conditional quantile of
y (i.e., 00.(y|x)/Ox for continuous regressors).

In order to avoid such a misspecification problem, it can apply the idea of
Ramsey’s (1969) test to our quantile regression problem. Classical test focuses
on misspecification of the conditional mean function E[ylx], we need new test
focus on the conditional quantile function Q,(y|x) = 0(x, 7).

If O(x, ©) is sufficiently smooth in x = (xy, ..., x)’, then for a Taylor expansion
around x = 0 under mild regularity conditions (Koenker, 2005) we have

89(x0) Z Za 0(x0)

ax ax ]1 Jz

0.(yx)=6(0,7)+ Z

] ’11112

k 070(x,0
+—z z ()(;x) X X) o

'Jl—l Jp 1

Thus, departures from the linear functional form can be assessed by
checking the significance of higher-order polynomials of x. However, if the
dimension of x is large, it is not practical to include all components that appear
in the p-th order polynomial. To avoid this practical problem, we substitute the
effect of the p-th order polynomials by the p-th power of the fitted variable y , =

By

We can approximate conditional quantile function

O:(yk) by X*B(0)+ W’ pou(T ), 3)

where w,= (V5 ..., ¥,) and a,(t) is a (p—1)x1 parameter vector.

Based on this approximation, the QRESET(p) for the linear specification
against the p-th order polynomial is defined as a joint significance test of

Hy: ay(t)=0. 4)
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1. IMPLEMENTATION OF THE TEST STATISTIC

A procedure to implement the QRESET(p) is described as follows:
1. Compute £ (t) by (2),andset y,=x";f(t) fori=1,..., n.
2.Using { y,}i=1,....n, compute

P . 1< , ,
(Br@.a @)= min ~3 p(y-xb-wa). 5)

ba )eRFxRP™!

and estimate the asymptotic variance of & ,(r ). This computation can be
conducted by standard packages for quantile regression.

3. Using @ ,(t) and its asymptotic variance estimator (denoted by 1 (T ),
compute the Wald
test statistic for (4):

W=a 1)V (1) @ 1), (6)

and conduct the significance test by the Xz@ -y critical value (if p = 2, we can use
the t-value for @ (7).

4. If H, is rejected, we suspect misspecification of the linear functional form
in (1).

One of the main advantages of the QRESET is its low computational cost: it
simply requires an additional quantile regression (5). Compared with existing
nonparametric specification tests such as Zheng (1998), the QRESET does not
include any kernel function and bandwidth parameter whose choices complicate
the practical implementation of nonparametric tests. On the other hand,
a disadvantage of the QRESET compared to the nonparametric tests is that the
QRESET may lack power when the polynomial approximation in (3) is not
accurate. This point will be formalized in the following discussion.

IV. PROPERTIES OF THE TEST STATISTIC

Suppose that z = (y, x’)’ is continuously distributed. Then the z-th
L (y]x) .
conditional quantile Q.(ylx) satisfies f ! Si(x)dy = 7, and the quantile

regression model (1) is equivalent to the following conditional moment
restriction,
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E[g(zp(t)lx] = E[r = Iy x’f() <0 x] =0 as., (7

where g is implicitly defined. The null hypothesis of correct specification is
written as

H'y: Pr{E[g(zf(r )lx] =0} =1, for some fB(z),
and the alternative is that H , is false. Also, note that (7) implies
Elh(x)g(z,p(r ))] = 0, for any (measurable) 4. (8)

In other words, the conditional moment restriction (7) implies infinitely
many unconditional moment restrictions in the forms of (8). If (8) is rejected for
some A, we can reject H'y as well.

From Koenker (2005), the first-order condition of the minimization problem
in (5) is written as

& |
;Z (W i ) (¢~ =% By )= W pity(T) < 0}) = 0,(n ), )

and its population analog is

E[(x’,w’)(t ~I{y =x’Bu(T) *w’p a,(t) <0})]=0. (10)

Therefore, the QRESET statistic is considered as the Wald test statistic for
the parameter restriction Hy in (4) under the unconditional moment restriction
model (10). From Newey and McFadden (1994), the Wald and GMM distance
test statistics are asymptotically equivalent in the standard GMM setup. In
addition, since the moment restriction (10) is just identified, the GMM objective
function for (10) converges to zero in probability. Therefore, the QRESET
statistic is asymptotically equivalent to the (normalized) GMM objective
function of the following unconditional moment restriction:

E[(x*w’,) 'g(z.p(x )] = 0. (1)

Since the QRESET statistic is asymptotically equivalent to the over
identification test statistic for the unconditional moment restriction (11), it has
the Xz(p 1) limiting distribution (Newey and McFadden 1994). Thus, from (8)
and (11), the QRESET has nontrivial power against some forms of
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misspecification, in which % is written as a p-th order polynomial function.’
However, the QRESET is not necessarily powerful against a// types of 4, i.e., the
QRESET is inconsistent for the null of necessarily powerful against all types of
h, i.e., the QRESET is inconsistent for the null of correct specification H.

To avoid the inconsistency problem for testing H',, we need to introduce
a nonparametric approach, such as Zheng (1998) or Bierens and Ginther (2001).
However, Zheng’s (1998) test requires the choices of a kernel function and
a bandwidth parameter, and Bierens and Ginther’s (2001) test requires the
choice of a weight function. Thus, the implementation of these nonparametric
tests can be cumbersome. Also the computational costs of the nonparametric
tests can be substantially more expensive than that of the QRESET.

Note that the QRESET can be used to check specification of multiple
quantile regression models Q,(y|x) = x’f(zx) for =1, .. ., m. In this case, we
approximate Q.(y|x) by x’B,(t) — w’, a,(t) and estimate a,(7) by the quantile
regression estimator for each /=1,..., m.

Then the multiple QRESET(p) can be defined as the Wald test for the joint
hypothesis

Hy: ay(t) = = op(T,) = 0.

By applying Koenker (2005) we can derive the asymptotic property of the
Wald test.

It can be suggest to use the QRESET as a practical complement to
nonparametric tests particularly in small samples. Also can be recommend to use
combinations of the QRESETs with different orders to detect various types of
misspecifications.

Advantages of the QRESET over the nonparametric specification tests are:

(i) since the QRESET is free from the choices of kernel functions and
bandwidth parameters, the QRESET is easier to implement than nonparametric
tests, and

(i1) in small sample sizes (typically fewer than 100), the QRESET can be
more powerful than Zheng’s (1998) test.

On the other hand, a disadvantage of the QRESET is the fact that the
QRESET is not necessarily consistent for all types of misspecification. The
QRESET is derived from a polynomial approximation of the conditional
quantile function, so, it may have poor power performance when this polynomial
approximation is inaccurate. Based on these arguments it can be suggest to use
the QRESET as a complement to the nonparametric specification tests
particularly in small samples.

2 Based on the notion of the information matrix test, Kim and White (2002) considered
a different choice for /(")
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V.DYNAMIC QUANTILE TEST

To assess the predictive performance of the models under consideration, we
follow Christoffersen’s (1998) framework, which is designed for evaluating the
accuracy of out-of-sample interval forecasts VaR. Defining H, = I(r, < —VaR,).
Christoffersen (1998) terms the sequence of VaR forecasts efficient with respect
to F, t-1 if

E(H| F.) =« (12)

which, by applying iterated expectations, implies that Ht is uncorrelated with
any function of a variable in the information set available at 7 — 1. If Equation
(12) holds, then VaR violations will occur with the correct conditional and
unconditional probability, and neither the forecast for VaR; nor that for H; could
be improved.

Equation (12) is stronger than correct conditional coverage; it suggests that
any x.; € Fy.; be uncorrelated with H,. In particular, Engle and Manganelli
(2004) remark that conditioning violations on the VaR for the period itself is

essential. To illustrate this point, they left {VaRt }thl be a sequence of iid random

variables such that
K, with probability 1 — &
VaR, = . . (13)
— K, with probability

As with all asymptotically motivated inferential procedures, the actual size
of the tests for finite samples can deviate from their nominal sizes. Lopez (1997)
examines the size of unconditional and conditional coverage tests via simulation,
as well as their power against various model misspecifications. For a sample size
of 500 observations, he finds both tests to be adequately sized. Even for such
a small sample, power appears to be reasonable. For the LR, test, for example,
he reports that, for a values of 0,05 or smaller, if the true data generating process
is conditionally heteroskedastic, then power is well above 60% for wrong
distributional assumptions for the innovations. In general, the tests have only
moderate power when volatility dynamics are closely matched but power
increases under incorrect innovation distributions, especially further out in the
tails.

For K very large and conditioning also on VaR,, the violation sequence
exhibits correct conditional coverage but, conditional on VaR,, the probability of
a violation is either almost zero or almost one. None of the above tests has
power against this form of inefficiency. To operationalize equation (12), one
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can, similar to Christoffersen (1998) and Engle and Manganelli (2004), regress
H; on a judicious choice of explanatory variables in Fy,, for example:

P
H, =4+ ZﬂiHH + B, VaR, +
i=1
where, under the null hypothesis:
Hp: A4y =Aand §,=0, for i=1,..., pt1.
In vector notation, we have:
H-A1=Xf+u

— «a, with probability 1-«
u, =
" |1-K, with probability

where Bo=2Ao— A and 1 is a conformable vector of ones.

Under the null hypothesis, of equation (12), the regressors should have no
explanatory power, that is Hy: B = 0. Because the regressors are not correlated
with the dependent variables under the null hypothesis, invoking a suitable
central limit theorem yields

frs = (XX)X/(H - 1) ~ N(O,(XX)"(A(1- 1)),
from which Engle and Manganelli (2004) deduce the test statistic

— ﬁLSX'XﬂLS 2 (14)

DQ /1(1_2’) Zp+2'

VI. NONPARAMETRIC ESTIMATION OF CONDITIONAL
QUANTILES

Denote, as earlier, the T quantile of the distribution Y given X = x as Q,(7/X)
which solves

FO,(tX) [x) = ¢ (15)
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where F (y/ x) is the conditional cumulative distribution of Y given x evaluated at
Y =y an estimate Q( T|x ) can be obtained from the observed pairs (X, Y)) (i =

1,..., n) by solving (1) after replacing F* with some estimate F. One choice of

A

F, which smoothes over X is

S KA, —x) I, < 3]
F(ylx)=-+— (16)
D> K{(X,—x)/h)

where K is a kernel function and 7/ is the indicator function, % is the bandwidth
parameter. For chosen h we can use a cross validation approach to minimize the
loss function

L(h) = p. ()%, - 09 (X)) (17)

i=1

where p, (z) can be interpreted as the loss function (Koenker, R., G. Bassett.
(1978)) and in) denotes the estimate of Q.X;) using bandwidth h, where
observation i has been dropped from a sample.

Equivalently, the nonparametric quantile regression estimator QAii) can be
defined to minimize

11 x—x A
= =K, (5, -0 18

over all Q..

For nonparametric quantile regression Yu and Jones (1998) suggests the
automatic bandwidth selection strategy for smoothing conditional quantiles,
which minimizes mean squared error of the conditional quantile functions as
follows:

he = By T(L=7) /(@ ()"} (19)

where ¢ and @ are the standard normal density and cumulative distribution
functions.
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VII. CONCLUSION

Compared with existing nonparametric specification tests, the QRESET
does not contain kernel functions and bandwidth parameters, and thus is easy to
implement. Although the QRESET is not necessarily consistent against all types
of misspecifications, simulation results indicate that the QRESET has reasonable
size and power properties and can be more powerful than nonparametric
specification tests in small samples.

Quantile regression allows us to directly model conditional VaR, utilizing
only the pertinent information that determines quantiles of interest. This is
contrast with the traditional methods that use information on the central
moments of conditional distribution — mean, variance, kurtosis etc. to construct
the VaR estimates. From this point of view quantile reression is important for
modeling intermediate and extremal conditional VaR.
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Grazyna Trzpiot
WYBRANE TESTY MODELU REGRESJI KWANTYLOWEJ

Przedstawiamy test weryfikujacy jakos¢ specyfikacji modelu regresji kwantylowej. Czgsto
wyznaczamy modele regresji kwantylowej i przeprowadzamy dalsze wnioskowanie analizujac
jedynie poziom bledow. Przedstawimy test dla funkcjonalnej formy modelu regresji kwantylowe;.
Test dopasowuje zmienng zalezng jako wyjasniajaca oraz sprawdza istotnos¢ wprowadzonej do
modelu zmiennej. Dodatkowo poréwnamy z nieparametryczng specyfikacja modelu
wykorzystujaca funkcj¢ jadrowa oraz przedziat parametrow.

Stowa kluczowe: test, model regresji kwantylowe;.



