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Abstract. The aim o f  this paper is to analyse the relatively new clustering m ethod -  

Support Vector Clustering (SVC) in term s o f  fulfilling admissibility conditions. The 

results are com pared within a group o f  four other clustering methods.

Since it is not possible to assess which clustering method is the "best" in general, 

given a specific problem the user can decide which method to apply considering some 

properties o f  clustering methods, known as admissibility conditions. This paper expands 

the knowledge about the properties o f  clustering methods with the properties o f  SVC.
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I. INTRODUCTION

The Support Vector Machines were introduced as a powerful tool for classi-

fication. They are also suitable for regression and novelty detection. There is 

a natural way o f turning SVMs for novelty detection (i.e. in the case o f one- 

class classification) into a clustering method (as proposed by Ben-Hur, Horn, 

Siegelmann and Vapnik in Ben-Hur et al. (2001)). The problem of novelty de-

tection can be translated into the issue of finding the multi-dimensional quantile 

function. Using the kernel trick (a standard technique for the support vector ap-

proach), we can search for the smallest hypersphere enclosing the image of the data 

in the high-dimensional feature space. By setting the radial kernel parameter large 

enough, we can force the hypersphere to split into several components, when we 

map it back to data space. These components can be interpreted as clusters.

Although using the quantile estimation method we treat all the observations as 

representing only one class, it is possible to make the algorithm able to predict 

whether the given pair of observations belongs to the same cluster or not. It can 

be performed by checking whether there is a point from the line segment con-

necting that two observations, which lies outside the multi—dimensional quantile.
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It turns out that SVC is a veiy flexible method. It can handle clusters with 

very irregular shapes without the need to make any arbitrary assumptions about 

the number and the shape o f the clusters.

There are many different clustering methods applicable in different situa-

tions. It does not seem possible to point to the one which outperforms the others. 

Having no information about the number and shape o f clusters (which is usually 

the case), the choice of a clustering method can be based on the knowledge 

about the properties o f a particular method.

In Section II the algorithm of the Support Vector Clustering is briefly pre-

sented. In Section III the definitions of selected properties, known as admissibil-

ity conditions o f clustering methods are given. Then in Section IV the results of 

the analysis o f properties of SVC are presented. Additionally the properties of 

other clustering methods are cited to enable the comparison and further conclu-

sions.

II. THE OVERVIEW OF THE SVC ALGORITHM  

The Smallest Enclosing Hypersphere
Following Ben-Hur et al. (2001) we present briefly the main ideas of the 

SVC methodology. Let D = {x1, . . . ^ }, x 'e R ' ' ,  /e{l,...,7V} be the data set of 

N  points. First we transform data points to higher dimensional feature space 

using the nonlinear mapping ę \  R *7 -> Z. Then we find the smallest hypersphere 

enclosing the image of the data in this feature space. We denote the center o f the 

hypersphere by a and its radius by R.

The problem o f finding the smallest enclosing hypersphere o f radius R can 

be written as an optimization task with v  -parametrization ( 0  < v  < 1 ) and soft 

constraints as in Schölkopf and Smola (2002):

The solution o f the problem can be found using Lagrange multipliers 

method. The dual form o f the Lagrangian is:

(1)

subject to j  <p(x')-a||2 <,R2 + £ ,  ä  0, i e
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Where K (u, v) = <р(м) ■ cp(y) already denotes the kernel function repre-

senting the dot product in high dimensional feature space Z. The solution has the 

following form:

a = £ а /Р(х‘)>
i=i

(3)
N N N _ V '

R 2 = K(xs, xs) + У~^  а р , K(x*, xj) -  2 ^  ̂ KCx1, Xs),
| = I jx . 1 1=1

where Xs denotes any o f the identified support vectors, i.e. observations corre-

sponding to nonzero Lagrange multipliers ( a s > 0 ).

Now we use the derived hypersphere to define a decision function/:

/ 0 0  = sgn

r (  N N . . N ^  
R 2 -  K(x,x) + ^ K ( x ' , x j) - 2 X ^ K ( x ,,x)

/ - 1  ; =  1 / - I  J )

(4)

This function will be used for cluster assignment in the next subsection. 

C luster Assignment

The hypersphere when mapped back to data space forms a set o f contours. 

Points enclosed by each contour are associated with the same cluster and the 

contours are interpreted as cluster boundaries. Formally, the contours consist of 

all points x' e R d for which the decision function/equals zero ( / ( x )  = 0).

We still need to know how to distinguish two different clusters (because 

the data points are now enclosed by the contours but still not labeled). To do the 

labeling we first note that all points from the ball in the feature space correspond 

only to the points in data space enclosed by the contours. So if we connect two

points x1 and xA from two different clusters with a line segment \ ' \ k we find 

y e x ' \ k , that is not enclosed by any contour, which means that its image lies 

outside the ball in the feature space. With the use o f the decision function



/defin ed  in (4) we can easily check if the image o f the given point у  lies out-

side the ball because it is equivalent to checking whether / ( y )  = - l .  For the 

cluster assignment we check the line segments connecting every pair o f points 

from the data set D by sampling the number of points. The results are stored in 

an adjacency matrix A = [alk ], t-] N :

й ц ,  —

i, iff / ( y ) = i  V L,
y e * ' * *  ( 5 )

0 , otherwise.

Note that since the clusters are not necessarily convex, the value ”0” in the 

matrix A does not mean that two corresponding points belong to two different 

clusters. Therefore clusters are not defined directly by the matrix A, but as the 

connected components o f the graph induced by A.

Implementational Details
We performed SVC based on the svm(...) function implemented in R pack-

age e 1071. However, this function is designed only for supervised classification, 

regression and one-class classification (novelty detection). Nevertheless, Remark

1 allows to apply this function to clustering:

Remark 1. It can be shown (as in Schölkopf and Smola (2002)) that the use

of the RBF kernel K(u, v) = exp(-/||u  -  v||2) (or any other translation invariant

kernel) makes the problem of finding the smallest enclosing hypersphere equiva-

lent to the task o f finding the optimal hyperplane separating the image of the 

data points from the origin in the feature space.

Remark 1 indicates that when we use the RBF kernel, the first part o f the 

SVC algorithm -  the identification o f the optimal hypersphere enclosing the 

image o f the data -  can be performed using the function for one-class classifica-

tion. It is possible since the function svm(..., type="one-classification") derives 

the optimal hyperplane separating the image of the data points from the origin 

and this is equivalent to finding the hypersphere. Based on the results o f the 

svm(...) function we developed the R code responsible for the second part of the 

SVC algorithm i.e. for the cluster assignment part.



III. DEFINITIONS OF SELECTED PROPERTIES OF CLUSTERING 

METHODS

The choice o f the clustering method can be based on the knowledge o f the 

properties of a particular method. These properties are known as admissibility 

conditions (see Fisher and Van Ness (1971)). Let us briefly present the defini-

tions.

Image. The algorithm is said to fulfil the image admissibility condition when 

the result o f the clustering does not change if the observations in a data set are 

permutated (the algorithm is independent from data points order).

Convex. The algorithm is said to be convex admissible if the convex hulls of 

the identified clusters are disjoint.

Well-structured. The algorithm is said to be well-structured if all within 

cluster interpoint distances are smaller than all between cluster distances.

Repeatable. This condition applies only to these algorithms which have cor-

responding discriminant analysis algorithms. The algorithm is said to be repeat- 

able admissible if for all x from the data set D the cluster assignment produced 

by the clustering method is the same as the prediction obtained for x after per-

forming the corresponding discrimination method on the data set D \  {x}, where 

x was removed and class labels were taken as results o f the clustering. So if the 

point x is always put back in its original cluster by the corresponding discrimi-

nant method, the algorithm is said to be repeatable admissible.

Cluster omission. The algorithm is said to fulfil cluster omission condition if 

the cluster boundaries resulting from performing the clustering on a whole data 

set are the same as the ones obtained from clustering on a reduced data set, 

where one of the previously identified clusters was omitted (of course the cluster 

boundaries should be the same but for the omitted cluster).

IV. RESULTS

Experiments were conducted on artificial benchmark data sets smiley, circle, 

twonorm, spirals from R package mlbench.

The simulations showed that SYC is repeatable admissible. First, clustering 

was performed using SVC. Having the classes labeled, we performed discrimi-

nation analysis using SVM on training set £>\{x}. Then we asked the SVM 

model to predict the class for x and we observed that SVM put every point x 

back to the cluster which this point was taken from.

The models resulting from applying the Support Vector technique are de-

fined by the kernel function (RBF kernel used in all the experiments) and the 

identified support vectors. Therefore, comparing SVC with the image admissi-



bility condition it was enough to check if the set o f support vectors had changed. 

The experiments confirm that SVC fulfils this condition.

Since it turned out that the SVC does not meet the three other admissibility 

conditions we provide simple counterexamples to prove it. We used the data set 

smiley since it is simple and suitable as a counterexample for all three admissi-

bility conditions.

Fig. (1) presents a counterexample to convex admissibility o f SVC. Fig. (2) 

shows that SVC is not well-structured. Fig. (3) illustrates that SVC does not 

fulfil the cluster omission admissibility condition.

admissibility of SVC -  presented convex hulls that SVC is not well-structured. The shorter 

of two clusters are not disjoint. line segment represents one of the between

cluster Euclidean distances, the longer one -

the within cluster distance.

Figure 3. The cluster boundaries obtained by SVC on the whole data set

and on the data set with one cluster excluded -  the shapes of the contour 

boundaries are different and therefore SVC does not meet the cluster 

omission admissibility condition.



The results o f the analysis of selected properties o f SVC are summarized in 

Table 1.

Table 1. Admissibility table

Clustering method

PROPERTIES

Image Convex
Well-

structured
Repeatable

Cluster

omission

SVC YES NO NO YES NO

Nearest neighbour YES NO YES YES YES

Furthest neighbour YES NO YES NO YES

Average linkage YES NO YES NO YES

Ward linkage YES YES YES NO YES

Source: the properties of Nearest neighbour, Furthest neighbour, Average linkage and Ward 

linkage methods were taken from Fisher and Van Ness (1973). The properties of SVC are own 

results.

V. CONCLUSION

There are many clustering methods applicable in different situations. Since it 

is very hard to indicate a clustering method that would give the best results in 

every situation, the properties of clustering algorithms need to be considered. 

Given the knowledge about admissibility conditions fulfilled by different meth-

ods, the user can choose the proper method to tackle the particular problem.

The new clustering method known as Support Vector Clustering seems to be 

a flexible tool. It can handle very irregular shapes without making any assump-

tions about the number o f clusters and their shapes. However, these features 

strongly depend on the kernel width parameter selection. The disadvantage of 

SVC is still the lack of an effective algorithm for choosing the value o f the ker-

nel width parameter.

The Support Vector Clustering satisfied only two of the analyzed admissibi-

lity conditions. However, meeting a certain condition (e.g. convex) is not always 

the property required by a user. Therefore, it may indicate the high flexibility of 

this method, but the control over this flexibility (kernel parameter selection) 

remains a crucial problem with. Moreover, solving the optimization problem and 

the process of the cluster assignment are computationally very expensive. This 

makes SVC unsuitable for large data sets. Taking into consideration these limita-

tions, SVC should be applied with caution.
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Michal Trzęsiok

ANALIZA WYBRANYCH WŁASNOŚCI TAKSONOMICZNEJ METODY 

WEKTORÓW NOŚNYCH

Celem referatu jest przedstawienie analizy wybranych formalnych własności takso-

nomicznej metody wektorów nośnych (SVC). Wyniki dotyczące nowej metody SVC 

zestawiono i porównano z własnościami innych znanych metod taksonomicznych.

Ponieważ na ogół nie jest możliwe wskazanie, która z metod taksonomicznych daje 

najlepsze rezultaty, stojąc wobec konkretnego problemu, badacz musi dokonywać wybo-

ru metody w oparciu o wiedzę dotyczącą ich własności. Zadaniem badacza jest wtedy 

ustalenie preferencji w zbiorze własności metod by następnie użyć ich przy doborze 

odpowiedniego narzędzia. Wiedza dotycząca formalnych własności metod taksonomicz-

nych jest w referacie rozszerzona o nową- taksonomiczną metodę wektorów nośnych.


