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ON AN IMPROVEMENT OF THE MODEL-BASED 

CLUSTERING METHOD

Abstract. An improvement o f  the model-based clustering (M BC) method in the 

case when EM algorithm fails as a result o f  singularities is the basic aim o f  this paper. 

Replacem ent o f  the maximum likelihood (M LE) estimator by a maximum a posteriori 

(M AP) estimator, also found by the EM algorithm is proposed. Models with different 

num ber o f  com ponents are com pared using a modified version o f  BIC, where the likeli-

hood is evaluated at the MAP instead o f  MLE. A highly dispersed proper conjugate prior 

is shown to avoid singularities, but when these are not present it gives sim ilar results to 

the standard method o f  MBC.
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In model-based clustering, individual clusters are described by multivariate 

normal distributions, where the class labels, parameters and proportions are un-

known. The data x, = jc/2___J*" are assumed to be generated by a mixture

with density:

where / s.(xj|0 v) is a probability distribution with parameters 0 V, and t s is the

probability o f belonging to the sth component. The parameters of the model are 

usually estimated by maximum likelihood using the Expectation-Maximization 

(EM) algorithm (Dempster et al. [1997]). Each EM iteration consist of two steps
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I. MODEL-BASED CLUSTERING
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-  an E-step and an M-step. Given an initial guess for the cluster means fit , co-

variances h s and proportions t s, the E-step calculates the conditional probabil-

ity that object i belongs to the 5th component:
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The maximization step (M-step) consists of estimating the parameters from 

the data and the conditional probabilities i is. The E- and M-steps iterate until 

convergence. Finally, each object is classified in the class in which it has the 

highest conditional or posterior probability. The results o f the EM are highly 

dependent on the initial values, model-based hierarchical clustering can be 

a good solution (Banfield and Raftery [1993]; Dasgupta and Raftery [1998])

In order to select the optimal clustering, model several measures have been 

proposed (McLachlan and Peel [2000]). In several applications, the BIC ap-

proximation to the Bayes factor (Schwarz [1978]) has performed quite well 

(Dasgupta and Raftery [1998], Fraley and Raftery [1998], [2002]). The BIC has 

the form:

BICS = 2 logp{x 0 „ M s) -  vs log(rt), (3)

where log/?(x0 v,M s.) is the maximized loglikelihood for the model and data, v.v

is the number o f parameters to be estimated in the model M s and n is the num -

ber o f observations in the data.

The strategy for model selection has been found to be effective in mixture 

estimation and clustering is given bellow:

1. Determine a maximum number o f clusters, и, (as small as possible) and a 

set of mixture models to consider.

2. Estimate parameters via EM for each parameterization and each number 

of components up to u. The conditional probabilities corresponding to a classifica-

tion from model-based hierarchical clustering are good choices for initial values.

3. Compute the BIC for the mixture model using the optimal parameters 

from EM for 2 clusters. This results with a matrix o f BIC values corre-

sponding to each possible combination of parameterization and number o f clusters.

4. Plot all of the BIC values. A decisive first local maximum indicates strong 

evidence for a model (parameterization and number of clusters).

For a review o f model-based clustering, see Fraley and Raftery (2002).



II. LIMITATIONS OF EM ALGORITHM

The EM algorithm for clustering has a number of limitations. First, the rate 

o f convergence can be very slow. This does not appear to be a problem in prac-

tice for well-separated mixtures when started with reasonable values. Second, 

the number o f conditional probabilities associated with each observations is 

equal to number o f components in the mixture, so that the EM algorithm for 

clustering may not be practical for models with very large numbers of compo-

nents. Finally, EM breaks down when the covariance matrix corresponding to 

one or more components becomes ill-conditioned (singular or nearly singular). 

In general it cannot proceed if clusters contain only a few observations or if the 

observations they contain are very nearly collinear. If EM for a model having 

a certain number of components is applied to a mixture in which there are actu-

ally fewer groups, then it may fail due to ill-conditioning.

III. BAYEASIAN REGULARIZATION FOR MULTIVARIATE 

NORMAL MIXTURES

Fraley and Raftery (2005) proposed a replacement of the MLE by the maxi-

mum a posteriori (MAP) estimate from a Bayesian analysis to eliminate conver-

gence failures of the EM algorithm. They proposed a prior distribution on the 

parameters that eliminates failure due to singularity, while having little effect on 

stable results obtainable without prior. The Bayesian predictive density for the 

data is assumed to be o f the form

Kix  (Ф ,- ) =  P ( r , , Ц ,, Z ,  |0 ),

Where L mlv is the mixture likelihood:
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and Р is a prior distribution on the parameters r v , ц ( and . Fraley and 

Rafter/ (2005) proposed to find a posteriori mode or MAP (maximum a posteri-



ori) rather than a maximum likelihood estimate for the mixture parameters. They 

used BIC for model selection, but in a modified form- the first term on the right- 

hand side o f (3), equal to twice the maximized log-likelihood is replaced by 

twice the log-likelihood evaluated at the MAP or posterior mode.

For multivariate data, a normal prior on the mean (conditional on the covari-

ance matrix) has a form:

H~|e | 2 е х р | - ““ ^[(Ц -  Цр)7' 2 Г 1 (|1 -  l»„)]j, (5)

and an inverse Wishart prior on the covariance matrix:

Hyperparameters \ip, к  p, vp, are called mean, shrinkage and degrees o f

freedom  respectively, of the prior distribution. The hyperparameter A^, which is

a matrix, is called the scale of the inverse Wishart prior. The prior defined in this 

way is called conjugate prior for a multivariate normal distribution and an in-

verse Wishart distribution. Under this prior, the posterior means o f the mean 

vector and covariance matrix are:
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The normal inverted Wishart prior and its conjugacy to the multivariate 

normal are discussed in e.g. Gelman et al. (1995) and Schafer (1997).

Fraley i Raftery (2005) proposed the following choices for the prior hyper- 

paremeters (к p,v р,Л р,д 2р) for multivariate mixtures:

/up is the mean of the data, 

к р = 0 ,0 1 .
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The posterior mean ---- ------ -—— can be viewed as adding к  observations

x p +ns

with value ц /; to each group in the data. The value was determined by experi-

mentations. Values close to and bigger than 1 caused large perturbations in the 

cases where there were no missing BIC values without prior. tcp = 0,01 resulted

in BIC curves that appeared to be smooth extensions to their counterparts with-

out the prior.

vp = 777 + 2 (8 )

The marginal prior distribution for ц is multivariate t centered р р with 

v -  777 + 1 degrees o f freedom. The mean o f this distribution is \ i r provided 

that vp > 777 , and it has a finite covariance matrix provided vp > m + 1 (Schafer 

[1997]).

g2p = (for spherical and diagonal models). The average of the di-

agonal elements o f the empirical covariance matrix o f the data- S divided by the 

number of components to the 21m power.
§

Ap =  —2 ^ 7  ( f o r  e l l i p s o i d a l  m o d e l s )  t h e  e m p i r i c a l  c o v a r i a n c e  m a t r i x  o f  t h e  

d a t a  d i v i d e d  b y  t h e  s q u a r e  o f  t h e  n u m b e r  o f  c o m p o n e n t  t o  t h e  1//77.

IV. EXAM PLE

The data was generated by cluster.Gen function (cluster.Sim package of R). 

Three elongated clusters contain two-dimensional data. The number of observa-

tions in each classes is: 13, 10, 13. The observations are independently drawn

from bivariate normal distribution with means (0 ;0 ' ,(1.5;7) , (3; 14) and covari

ance matrices: L, =
1 -  0,9' '1,5 o '
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Functions of mclust package of R were implemented to Bayesian regulariza-

tion for mixture models

For the analyzed dataset the model and classification chosen according BIC 

without prior chooses four component VII model with four components, when 

the known number o f components is three. The standard BIC values based on 

the MLE are not available for six models (VII, VEI, EVI, VVI, VEV, VVV)



with five or more mixture components. For those number o f components models 

fail to converge without the prior because one of the covariances becomes singu-

lar as the EM iterations progress, as shown in Figure la). The hierarchical clus-

tering result based on the unconstrained model used for initialization assings 

a single observation to one o f the groups in those cases. The Bayesian regulari-

zation allows identification o f a group with a single member while allowing the 

covariance matrix to vary between clusters, which is not possible without the 

prior. The BIC with the prior peaks the 3 groups classification for Eli model. 

The Ell model with three components is chosen according to BIC with prior. In 

this case failures due to singularity for almost all models are eliminated and the 

right number o f clusters is selected.
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Source: Own research.
Figure 1. BIC values
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IV. CONCLUSIONS

We have shown an improvement o f the model-based clustering for avoiding 

the singularities that can arise in estimation using EM algorithm. The method 

involves a proper conjugate prior and uses the EM algorithm to find the MAP 

estimator. For model selection it uses a version o f BIC that is modified by re-

placing the maximized likelihood by the likelihood evaluated at the MAP.
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Ewa Witek

O PEWNEJ MODYFIKACJI W METODZIE TAKSONOMII OPARTEJ NA 

MODELACH MIESZANYCH

W artykule przedstawiona została modyfikacja metody taksonomii opartej na mode-

lach mieszanych, w przypadku gdy niemożliwym staje się oszacowanie parametrów 

modelu za pomocą algorytmu EM. Gdy liczba obiektów przypisanych do klasy jest 

mniejsza niż liczba zmiennych opisujących te obiekty, niemożliwym staje się oszacowa-

nie parametrów modelu. By uniknąć tej sytuacji estymatory największej wiarygodności 

zastępowane są estymatorami o największym prawdopodobieństwie a posteriori. Wybór 

modelu o najlepszej parametryzacji i stosownej liczbie klas dokonywany jest wówczas 

za pomocą zmodyfikowanej statystyki BIC.


