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ON THE ESTIMATION IN SIMPLE LINEAR REGRESSION MODEL
WITH AUTOREGRESSIVE MOVING AVERAGES (ARMA) ERROR

1. Introduction

Suppose that a response y, follows the model:
,t.no+n1!t+.t. t= 1, 2, ees | ; (1)

The simple linear equation (1) states that in period t, the
value of y, the response, is determined by four factors: the po=-
Pulation constant Bo; the population regression coefficient B,,
the level of x, and the level of e, the disturbance term.

The d{sturbance term is assumed to have certain properties in
order to carry out statistical estimation and tests of significan-
ce. Departures from these assumptions bring some of the characte-
ristic problems. For i{instance,usually, one assumes that all pairs
of values of e,, whether adjecent in time or not, are not cor-
related, A departure from this assumption gives rise to the
Problem of autocorrelation. ’ |

This problem has been studied by a number of statisticians,
for instance, And erson (1942), Cochran (1949), Q u e~
Bouille (1949), Durbin (1950), Hannan (1957) The-
11 and N agar (1961), and in recent years B o X and Piler
¢ e (1970) studied the distribution of residuals which follow &
mixed ARMA model, P i e rc e (1971) developed a method for esti-
mating the parameters by using the first order terms in Taylor's
eXpansion and appiied it to an ARMA of the first order and N ue
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r 1 (1979) proposed a method for finding approximate estimates
for the parameters which is basically related to the least squares
method with some modifiocations.

The purpose of this paper 1s to investigate the properties of
the model (1), especially when the errors e, follow & low order
ARMA, That is because, in practice, it is frequently true that an
adequate representation of actually ococurring etationary time
series can be obtained in mixed models, in which the order of
autoregressive process p and the order of noviﬁg average q are
not greater than 2 and often less than 2 (B ox and Jenkins
1970). So ARMA (3) is studied in some detail,and some new results
are obtained. Attempts are made to construoct suitable examples:
artificial examples and economic data examples.

2. The Prozortios

In the model (1) suppose that

-1
e, = ¢ (B)o(B)a,, (2)
where a, 's are independently and nornally distributed random vari-
ables with zero means and variance , $ and © are polynomials
gsuch that:

O(B) = 1 = ¢B - Q.‘,nz. 8(B) = 1 = 8,B - eza"’

end B 18 the back-shift operator (lag operator) defined by Bdft -
= ft -3 for any function ft and  for J = 1, 2. The following are
some of the characterizations for the propo-od model for LI

1. Using equation (2) the second order autoregressive, the
second order moving average process ARMA (3) ocan be written as:

(1 - 6,8 = 2,8%)e, = (1 =~ 8,8 = 0,8%)a,,
or

= Q101 * 9% p ¢ 8y - 08y = B8y o (3)

2. Multiplying equation (3) by e;_ . and taking expectations,
it could be obtained that
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T ® Q1‘k-1 4 Q2‘):-2 a tao(k) - 9 tﬁo(k w1 OyTae(k = 2),
(4)

where ly = cov(e,, % k) and t“(k) is the c¢ross covariance be-
tween a and e at lag difference k, defined by E(age, ,). Since
@:.x depends only on shocks which have occurred up to time t-k,
we obtain
2 s
o“t, (_01. 8) k<0

‘a.(k) - 02 k=20 (S)
0 k>0

3. It follows that

lo = &4 84 + Bpi; + 6% = 841 ael=1) = Oplae(=2), (6)
I = ¢1,‘o v ta, - 0102 - Ozt‘.(-1), 7
tz - 01 81 + 028\0 - 92020 : : (8)

And for k > 2, ‘k = Q1fk_1 + Dof o which does not involve
the moving average parameters. Therefore, after lag 2, the auto-
Covariances and consequently the autocorrelation coefficients
behave as those for the AR process. And so we reach the same con-
®lusion as Ander s on (1976).

4. Multiplying equation (3) first by a,_; and secondly by
8. and taking expectations we find

t..(-1) | (Q1 - 61) 02 \ (9)
And

lag(=2) = (82 = 8,8, + 8, = 8,1 0% | ~(10)
3ubnt1fut1ng these in equations (6) and (7) leads to

it (1-8,) [t + 62 + 8,2- 20,3, ] - 2Q,£e,+egg1- 8,9, ]
4 (1+8,) [0 -9)° - ef]

a2,

(1)
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¢ Oy % By O =08 o
Y - (12
b ==, Yo . amm )
and
b vei-4] 82+ 04y - Oy + G0, - 8,018, ,
b2 -9, Yo~ - ) o®.

(13)

3. Least Squares Estimators

To obtain the least squares estimators of the coefficients,
we first rewrite equation (1) as follows

g%g% Yy '% (Bg *+ Byxy) + ay. (14)

Then the problem is carried out dy minimizing

ve 2;[%@% (7 - By - Byxy)) % (15)

We find that

-2 Z‘{% }2 (3% = Bo = B4Xy),

o8, - -22;{3%3}2 (3¢ - Bo = By%y)%4s

S

B)BY 2
765;'-22; e(B) (¥4 =Bg = Byxy)"s r= 1, 2
and
3 o(B) } %58 2
a—g;-zg s (?t-po-n1xt) b 1 P (16)

Pollowing the approximations proposed by N ur i (1979) we
obtains

2 | :
{-g-g%} =1 - 20,8 - 2@282 + 20,B + 23232 = A(B),
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¢ (B)BT R IS R ™2 . 29,57 4 20372 ra 1, 2
TNE 1 2P 1 2B s ’

{%L‘&};-’;x B - 20,851 - 20,852 4 308" 4+ 308%2. (17)
(B

2 |
1. An initial estimator for B -( B:).u obtained by the least
8quares method for the model y, = By + B X, + @,.

2. Defining z, = (’t - bo - b,xt)z,the normal equations(16),
take the form

and

abA(B) + by )’ A(B)x, = Z:JA(B)yt. (18)
t
by) AB)X, + b, Zt:A(B)xf . ZIA(B)xtyt. (19)
T
24 Z_"'t-m . °2;'t-x-2 - 20, Z_‘/'t-m » 2°2Z;’t-x-2 .
a 't-r' : (20)

”12;%--1 + 20, Z;‘t-a-z - 36, Z‘J't-a-l P 3°2Z;I‘t---2 -
- z;lt_.. s=1, 2, (21)

3. Solving equations (20) and (21) an dinitial estimator of
%= (Q,Q.‘,0,0z)r is obtained, namely

4. After obtsining the initial estimate of x, the sets of
®quations in (18) and (19) are employed to obtain a first approxi-
sate estimator !(1) and so the first approximate estimator of «
18 then obtained. And so on iteratively these steps are repeated
0t41 we have lb(n) i b(‘“’”l < 5, and lokm) Lm=D)| < 5, for

Some specified numbers &, and &y.
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4, The Distribution of the Eastimators

Define a random variable u, such that Q(B)ut = a,, where
O(B) = 1 = 0B = 0,87 and a, 18 NID(0, o2,

1. Following Wold eand Mann (1943).(61 62)"! is asymp~
totically normal with mean(®, Oz)T and variance-covariance matrix

R e | S
g =1, where r-(r: r

- O. 1.
2. [ can be obtained alternatively as follows

)‘M [po= covlug, ug )= B uug, ., r=

1
U 1-‘»18-@232% 1 - 13 ~ B¢

where T1 + Ta = 01 and 11T2 o - 02. or

T T
‘%'22111 (1-%2_3'1_-%,‘5.)‘1;-

or

z( o - Ti“)‘tv-y (22)

§=0

Tho-roforo I‘r = E“t“t 2

1
=
L T, = T,

It -1r1)! ;Zg (Tgﬂ - ) ’?Miﬂ)r IR

or

s = %21‘1)2 326 (T%H = qﬁ)(,gﬂ'ﬂ = Ii*"') .(23)

subastituting r = 0, 1, and after few steps we obtain
4

4 (1 -9,) a?
(1 + 0,)[(1 - 8,)° - 7]

r, (24)

and
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0102

T (e 9,)[(1 - 92? -03] ° ' S

3. Similarly define the randou variable v, such that (1 -8,B~
- 8,8%)v, = a,, where & = (§, 8, )T 1s dno asymptotic normal

with mean © and variance-covariance matrix %0 2 Q". where Q =

Qn Q
(Q? Q;) such that Q. - B't't+.l = 0018 using the same way
as for [, we obtain:
V. ® x—x—1 +1 +1 :
T Gk Y (24" -ad*) oy . (26)
where A‘ > 22 - 01 ‘nd_a1 AZ = .02
and

(7, "'1) =0

Substituting s = 0, 1 we obtain

(- o)

o [0 - % - % %
n

Q K (29)

' (v ) [(1 - )% - 6]

'o '.1

such that
3. %o )

'45 Dotine. a matrix w -(

M = oov(uy, Vo) = B upVe,e

Now, for k = O
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0" s, - m:)z(;.z = 17) 2 (23" - )3 -23*).

§=0

And after few steps we obtain

s (’ - 8,0,)6° Eadh

where k = 1,

2 . + +
1= Buv - @, "ﬁ(lz _-11)42)' (rg 45 1'40-1)(;2 2 -

- A{*2 ) . (31)

or

(84 +<b1°2 )6 (32)
(1 -¢262) - (8, +<l>,92)(o1 + 6, 2)

But, where k = =1, we have

2 2 ‘
B 3 WG ARL W TR

or

(Dy + 6,05) 6¢?

w_ (33)
TT(-0,0,)% - (0 +840,)(8; + 048;)

comparing (32) with (33) it appears that w, # w_,.
5. We obtain that

is normally diatributod (biva.riato) with mean B and variance-
covariance matrix (62/n) B~', where
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1 (o 1 2
e ((‘ p 2 °§—> n(l - 6, = 6,) Zbit>n Z;bit
Qc 7 (Qé)'r is asymptotic normal (4-dimensional) with mean & and

' 2 w\=1 AA
 Variance~covariance matrix .%.(I‘ & ) and «3oxummmutl:r(_ﬁ_c_dSa)T
\w Q
18 asymptotic normal (7-dimen.) with mean (B & 62)
~covariance matrix:

T and variance-

-1

(34)

"3
o I._; o
© O € O

=]
© oo Ww
NJ © O O
o |-
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0 ESTYMACJI PARAMETROW LINIOWYCH MODELI
ZE SKEIADNIKAMI LOSOWYMI TYPU ARMA NISKICH RZEDOW

¥ badaniach empirycznych istniejq zwykle podstawy do zaloe-
nia, ¢e badany szereg czasowy generowany est przez "mieszany"
proces stochastyczny bgdacy sung procesu au orogroa¥gno o 1 pro=
cesu Srednich ruchomych ARMA (B ox, Jenkins 70)3 w ni-
niejszej pracy =zanalizowano niektére wxasnodci modeli typu ARMA
niskich rzedéw, szczegélnie procesu ARMA (2,2).



