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Summary 
 

Decision-making by the two negotiating parties is simulated by a prisoner’s dilemma game. The game is 
formulated in a quantum manner, where players strategies are unitary transformations of qubits built over the 
basis of opposite decision options. Quantum strategies are correlated through the mechanism of quantum 
entanglement and the result of the game is obtained by the collapse of the resulting transformed state. The 
range of strategies allowed for quantum players is richer than in case of a classical game and therefore the result 
of the game can be better optimized. On the other hand, the quantum game is save against eavesdropping and 
the players can be assured that this type of quantum arbitration is fair. We show that quantum prisoner’s 
dilemma has more favorable Nash equilibria than its classical analog and they are close to the Pareto optimal 
solutions. Some economical examples of utilizing quantum game Nash equilibria are proposed. 
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1. Negotiations as a game 
 

Many decisions made by negotiating parties rely on the strategic interaction between 
them. By this we mean that negotiating parties can choose between different strategies, 
typically conflict or cooperation between them. They both agree that the mutual 
cooperation is the most desirable behavior but their choices are made simultaneously 
without knowing the other party’s decision. It yields the temptation to refuse cooperation 
(defection). This kind of interactions is often described by the classical game theory.  

One of the best known games of that type in the Prisoner's Dilemma [PD] game. 
It was first described by Flood and Dresher [Flood, Dresher, 1952] and popularized by 
Albert Tucker, whose two-prisoner story was a basis for the current name of the game. 
The popularity of PD comes from its universal game scheme, which describes a negotiation 
dilemma very common in everyday life. A typical scenario contains an assumption that 
two players, Alice and Bob, independently of each other make a choice between cooper-
ation (C) and defection (D). The choice of the two players is a basis for a payoff matrix 
which is shown in Table 1.  
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TABLE 1. 
The payoff matrix for the Prisoner's Dilemma 

  Bob 

A
lic

e 

,ݎ) ܥ ܦ ܥ  ,ݏ) (ݎ ,ݐ) ܦ (ݐ ,݌) (ݏ  (݌
The strategy (ܥ) means cooperation and strategy (ܦ) - defection. The first number of each pair 
represents Alice's payoff, while the second number is Bob's payoff. The payoff ݎ corresponds 
to 'reward' for cooperation, ݐ is related to 'temptation' of betrayal, ݏ is 'sucker's payoff' and ݌ 
stands for 'punishment' for mutual refusal of cooperation. These numbers fulfill an inequality: ݐ > ݎ > ݌ > ݎ and ݏ > ௦ା௧ଶ .  

Source: [Rapoport, Chammah, 1970]. 
 
Analyzing the payoff matrix we can notice that independently of the opponent's move, 

the dominant strategy of each of the players is the defection strategy. The pair of strategies (D, D) is here the Nash equilibrium [NE]. Paradoxically, the equilibrium corresponds to 
mutual punishment (p, p), which is highly remote from the Pareto optimal result. Mutual 
cooperation (C, C) is the best move to get an optimal result. However, a game like 
this requires mutual trust of the players, as every change of (C, C) strategy brings each 
person a reward - a temptation of betrayal	t, which for the second player means a punish-
ment in form of a sucker's payoff	s. If the PD is played by two parties without mutual 
trust, the most frequent outcome is mutual punishment for lack of cooperation. Mu-
tual defection as the only NE of the PD is the natural reservation point for both 
negotiators. The goal of the present paper is to show, that within the quantum frame-
work, mutual defection can be replaced by another NE, that is much more favorable 
for negotiators and therefore can be regarded as an alternative reservation point. 

A natural extension of the game to a multiplayer PD is possible, in which the dilemma 
is generally the same as in the two player game. From a practical point of view an im-
portant extension of the game is its iterated version [Hamilton, Axelrod, 1981] in which 
the players' strategies depend on previous games they played. These extensions will not 
be considered in the present paper.  

 
 

2. Quantum game definition 
 
Experimental psychology shows that real human decisions in a situation of PD are 

often incompatible with the classical NE. Some researchers argue [Busemeyer, Wang, 
Townsend, 2006; Pothos, Busemeyer, 2009], that to explain human decisions making, 
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more suitable than classical are quantum methods. As the research on quantum infor-
mation processing was developed, the quantum version of PD has been formulated 
[Eisert, Wilkens, Lewenstein, 1999; Szopa, 2014]. In its perspective players' strategies 
are operators in a vector space called the Bloch sphere. This space is a collection of 
qubits – normalized vectors with complex coefficients spanned on a basis of two elements ሼ|ۧܥ,  ሽ, which, up to the phase, can be represented in the formۧܦ|

 |߰ۧ = cos ఏଶ ۧܥ| + e୧థsin ఏଶ|(1) ,ۧܦ 

where ߠ ∈ [0, ߶ and [ߨ ∈ ,ߨ−]  .(cf. Figure 1) [ߨ
 

FIGURE 1. 
The Bloch sphere 

   
The Bloch sphere with marked localizations of the qubits, |ۧܥ = ቀ10ቁ- cooperation, |ۧܦ = ቀ01ቁ  

– defection and the qubits localized in the ݕݔ plane and intersecting axes. 
 
The qubits |ۧܥ and	|ۧܦ, which are quantum pure states, correspond to cooperation 

and defection. The following description is the same for an arbitrary 2x2 game with |ۧܥ 
and |ۧܦ corresponding to any other strategies. The rest of the Bloch sphere qubits are 
states in a superposition of two quantum states. According to the principles of quantum 
mechanics, unless we take a measurement we cannot tell in which of the two states, 
the qubit actually is. The one thing we can say is that as a result of measurement, |ۧܥ	can 

occur with probability of cosଶ ఏଶ and |ۧܦ with probability of sinଶ ఏଶ. 
The measurement is followed by a collapse of the wave function, which from state 

changes to |ۧܥ or	|ۧܦ. As an example, all qubits located on the Bloch sphere equator (the 
circle in the x-y plane of Figure 1.) represent quantum states, which after the measurement 

collapse into state |ۧܥ or |ۧܦ with probability 
ଵଶ. (The Schrödinger's cat example shows 
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analogous situation in which states |ۧܥ i |ۧܦ correspond to the cat being dead or 
alive.) 

In quantum game theory, neither qubits |ۧܥ nor |ۧܦ corresponds to players' strate-
gies. Here the strategies are unitary operators ෡ܷ஺ – for Alice and ෡ܷ஻ – for Bob. The 
unitary strategies work at certain entangled quantum state	|߰଴ۧ, which is known for both 
players. These transformations, in general, are Bloch sphere rotations ෡ܷ௑ ∈ ܷܵ(2), de-
fined by unitary matrices 

 ෡ܷ(ߠ, ߶, (ߙ = ቌ ݁ି௜థ cos ఏଶ ݁௜ఈ sin ఏଶ−݁ି௜ఈ sin ఏଶ ݁௜థ cos ఏଶቍ	, (2) 

with ෡ܷ௑ = ෡ܷ(ߠ௑, ߶௑, ௑ߠ ,(௑ߙ ∈ [0, ,௑ߙand [ߨ ߶௑ ∈ ,ߨ−] ܺ	,[ߨ = ,ܣ -In particu .ܤ
lar, if the rotation is determined only by the angle	ߠ, i.e. ߙ = ߶ = 0, it may be written 

as ෩ܷ(ߠ) = ෡ܷ(ߠ, 0,0) = cos ఏଶ መܥ + sin ఏଶ ෡ܦ , where the identity matrix ܥመ ≡ ෩ܷ(0) cor-

responds to the cooperation strategy and the matrix ܦ෡ ≡ ෩ܷ(ߨ) = ቀ 0 1−1 0ቁ (altering 

the qubits |ۧܥ and	|ۧܦ) corresponds to the defection strategy. The strategy ෩ܷ(ߠ) is 
equivalent to the classical mixed strategy, for which the probabilities of both pure 

strategies ܥ and ܦ are accordingly cosଶ ఏଶ and	sinଶ ఏଶ. 
The quantum game, being a two-player game, takes place in a space of qubit pairs, 

one per each player. The qubits are correlated with each other by quantum entanglement 
(Figure 2).  
 

FIGURE 2. 
The setup of a quantum game 

 
 
 
 
 
 

 
 
 
 
 

 
 
Such a game may be physically performed by implementing a quantum computer 

algorithm dependent on the strategy of players. Such algorithm was realized experi-

 መܬ ۧܥܥ|
෡ܷ஻ 

෡ܷ஺ 

 መற ห߰௙ൿ |߰଴ۧܬ
Alice 

Bob 
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mentally [Du, et al., 2002] on a two-qubit, nuclear magnetic resonance quantum com-
puter. Details of its operation, i.e. physical implementation of the quantum algorithm are 
not essential for the understanding of quantum games, and in this paper will be omitted.  

The initial state of the game is represented by a pair of |ۧܥܥ qubits, the first of 
them representing Alice's state, the second Bob's state. The basis vectors of the space 
of pairs of qubits |ۧܦܦ| ,ۧܥܦ| ,ۧܦܥ| ,ۧܥܥare pure states. For computational simplicity, 
we define them as vectors	(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1) in a four-
dimensional space of states. The initial state |ۧܥܥ is transformed by entangling operator ܬመ = ଵ√ଶ መܫ) + ො௫ߪ መ is the 4-dim identity matrix andܫ ො௫), whereߪ⨂ො௫ߪ݅ = ቀ0 11 0ቁ is the 

Pauli matrix. As the result we get the entangled state |߰଴ۧ = ۧܥܥ|	መܬ = 	 ଵ√ଶ ۧܥܥ| +௜√ଶ -Then we act by a direct product of operators ෡ܷ஺ and ෡ܷ஻ representing quan .ۧܦܦ|

tum strategies of Alice and Bob. Before taking measurement on the final state we act 
using disentangling operator  ܬመற. As a result, the final state ห߰௙ൿ is given by 
 ห߰௙ൿ = )መறܬ ෡ܷ஺	⨂	 ෡ܷ஻)	ܬመ	|(3)  ۧܥܥ 
and usually it is an entangled state:  
 ห߰௙ൿ = ۧܥܥ|	஼஼݌ + ۧܦܥ|	஼஽݌ + ۧܥܦ|	஽஼݌ +  (4) ,ۧܦܦ|	஽஽݌
where	|݌஼஼|ଶ,…, |݌஽஽|ଶare probabilities of the measurement taken on the final state 
being one of the four possible outcomes.  

In the quantum game the expected value of Alice's payoff $஺ is the weighted mean 
of four classical values ݎ, ,ݏ  from the payoff matrix (Table 1) ݌ and ݐ
 $஺ = ஼஼|ଶ݌|	ݎ + ஼஽|ଶ݌|	ݏ + ஽஼|ଶ݌|	ݐ +  ஽஽|ଶ, (5)݌|	݌
where weights correspond to quantum probabilities of corresponding pure states, 
which up to the phase are equal to [Chen, Hogg, 2006]: ݌஼஼ = cos ஺2ߠ cos ஻2ߠ cos(߶஺ + ߶஻) − sin ஺2ߠ sin ஻2ߠ sin(ߙ஺ + ஼஽݌ ,(஻ߙ = sin ஺2ߠ cos ஻2ߠ cos(ߙ஺ − ߶஻) − cos ஺2ߠ sin ஻2ߠ sin(߶஺ − ஽஼݌ ,(஻ߙ = sin ஺2ߠ cos ஻2ߠ sin(ߙ஺ − ߶஻) + cos ஺2ߠ sin ஻2ߠ cos(߶஺ − ஽஽݌ ,(஻ߙ = cos ஺2ߠ cos ஻2ߠ sin(߶஺ + ߶஻) + sin ஺2ߠ sin ஻2ߠ cos(ߙ஺ +  .(஻ߙ

Bob's expected payoff is given by formula after the ݏ ↔  replacement. Let us notice ݐ
that the quantum situation can be simulated by a classical experiment, where the coeffi-
cients in front of ݎ, ,ݏ  in can be replaced by 0 or 1 by using a classical device, which ݌ and ݐ
draws 1 with probabilities	|݌஼஼|ଶ,…, |݌஽஽|ଶrespectively and 0 otherwise. The result 
shall be the same as an average result after the quantum game is played multiple times. 
When taking into account a quantum device entangling qubits and performing particular 
unitary transformations , the game result is given by a measurement taken on the final state. 
The final state, obtained as a result of the collapse of the wave function, shall give, with 
proper probabilities, one of four possible states. Using entangled quantum strategies by 
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the players gives an opportunity to have mutual interaction between them, which has no 
counterpart in classical games. The main advantage of the quantum game is that the 
result of the wave function collapse is hidden by Nature. Even if one of the players eaves-
drops the other player strategy, he can’t be sure about the result of the game, which is 
given by (3) until the measurement of the final state	ห߰௙ൿ. 

 
 

3. Quantum PD in classical limit 
 
The quantum game becomes a classical game when strategies do not include com-

plex phase factors i.e.:	ߙ = ߶ = 0. In fact, entangling operator ܬመ is commuting with 
direct product ෩ܷ஺⨂	 ෩ܷ஻ of each pair of classical operators, but ܬመறܬመ = መ and therefore ห߰௙ൿܫ = ( ෩ܷ஺	⨂	 ෩ܷ஻)	|ۧܥܥ and consequently Alice's expected payoff is  

 $஺(ߠ஺, (஻ߠ = 	ݎ cosଶ ఏಲଶ cosଶ ఏಳଶ + ݏ cosଶ ఏಲଶ sinଶ ఏಳଶ 	+	
ݐ  sinଶ ఏಲଶ cosଶ ఏಳଶ 	+ 	݌ sinଶ ఏಲଶ sinଶ ఏಳଶ , (6) 
this gives, a result identical with the classical game, where both players choose mixed 
strategies (Table 2). 

 
TABLE 2. 

The payoff matrix of quantum PD in the classical limit 

 Bob 

A
lic

e 

ܥ  ൬cosଶ ஻2ߠ ൰ ܦ ൬sinଶ ஻2ߠ ൰ܥ ൬cosଶ ஺2ߠ ൰ (ݎ, ,ݏ) (ݎ ܦ (ݐ ൬sinଶ ஺2ߠ ൰ (ݐ, ,݌) (ݏ  (݌
   
 
In the classical limit	ߙ஺ = ߶஺ = ஻ߙ = ߶஻ = 0. The payoffs  are reproduced by as-

suming that players use mixed strategies determined by ߠ஺ and	ߠ஻. Their payoffs are 
to be multiplied by the probability of particular strategy choice (in the parenthesis). 

For example if Alice chooses cooperation ߠ஺ = 0 and Bob defection	ߠ஻ =  the ,ߨ
game result is (ݏ,  so Bob wins. The only difference between the classical PD and the ,(ݐ
classical limit of quantum PD is that in the former the player choosing mixed strategy has 
to take draw by his or her own and eventually choose the option ܥ or	ܦ. Between draw-
ing and choosing an option there is a moment in time when the player can change his or 
her mind (as well as probability distribution) or the opponent can eavesdrop information 
regarding the planned movement (and respond to it adequately). In quantum PD 
a player decides only which strategy to use. The strategy is determined by an angle ߠ and 
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all the rest is done by the quantum computer. There is no opportunity to eavesdrop 
quantum information by the opponent, at least in case without the quantum noise. 
Any such attempt would lead to a collapse of the wave function and ultimately end 
of the game.  

Analyzing (6) it can be easily shown that the NE for the classical PD is the pair of 
mutual defections (ܦ,ܦ), corresponding to	θ஺ = θ஻ =  If one of players uses .ߨ

a classical strategy, e.g. ෩ܷ(ߠ) and the other quantum strategy ෡ܷ ቀߠ + ,ߨ 0, − గଶቁ	then 

the game result shall be (ݏ,  in favor of the quantum player. This shows the advantage (ݐ
of quantum strategy over classical strategy - independently of the strategy used by the 
classical player, the quantum player always finds the best answer, which gives him the 
maximum payoff ݐ and leaving the classical player with the sucker’s payoff	ݏ. 

 
 

4. Nash equilibria of quantum PD 
 
The quantum strategies give in fact, a great variety of outcomes, normally not 

achievable by conventional strategies. Let us assume that Alice chooses arbitrary quantum 
strategy ܣመ = ෡ܷ(ߠ஺, ߶஺, ෠ܤ ஺). Bob may answer with strategyߙ = ෡ܷ(ߠ஻, ߶஻, (஻ߙ =෡ܷ ቀߠ஺ + ,ߨ ,஺ߙ ߶஺ − గଶቁ. Note that regardless of Alice's choice Bob's move gives 

coefficients ݌஼஼ = ஽஼݌ = ஽஽݌ = 0 and |݌஼஽| = 1. Transformation used by Bob 
„cancels” any of Alice's moves and drives to a situation when Alice's final strategy 
written in ห߰௙ൿ becomes 'cooperation' whereas Bob plays 'defection'. The game results 
in Bob's maximum reward ൫$஺,$஻൯ = ,ݏ)  ,However, the quantum game is symmetrical	.(ݐ

so that Alice can respond to Bob's strategy ܤ෠  with ܣ′෡ = ෡ܷ(ߠ′஺, ߶′஺, (஺′ߙ =෡ܷ ቀߠ஺, ߶஺ − గଶ , ஺ߙ − గଶቁ strategy. Here the only non-zero factor of ห߰௙ൿ is |݌஽஼| = 1, 
which means that now Alice plays 'defection' while Bob plays 'cooperation' and the 
payoff gets reversed	൫$஺,$஻൯ = ,ݐ) ෡′ܣ The best answer for Alice's strategy .(ݏ  

is Bob’sܤ′෡ = ෡ܷ(ߠ′஻, ߶′஻, (஻′ߙ = ෡ܷ ቀߠ஺ + ,ߨ ஺ߙ − గଶ , ߶஺ −  ቁ, because the game’sߨ

result is again	൫$஺,$஻൯ = ,ݏ) ෡′ܤ Eventually, the best answer to .(ݐ  is Alice's initial 
strategy, which gives her a winning position again൫$஺,$஻൯ = ,ݐ)   .(ݏ

 Let us now assume that Alice chooses her meta-strategy which mixes two of her 
quantum strategiescosଶ ఊಲଶ መܣ + sinଶ ఊಲଶ ෡′ܣ ஺ߛ	, ∈ [0,  We call it meta-strategy because .[ߨ
it is a classical mixture of two quantum strategies. At the same time, Bob takes a similar 
step by playing his meta-strategy cosଶ ఊಳଶ ෠ܤ + sinଶ ఊಳଶ ෡′ܤ ஻ߛ	, ∈ [0,  Alice's expected .[ߨ
payoff is equal to: 

 $஺ = 	ݏ ቀcosଶ ఊಲଶ cosଶ ఊಳଶ + sinଶ ఊಲଶ sinଶ ఊಳଶ ቁ +	
ݐ  ቀcosଶ ఊಲଶ sinଶ ఊಳଶ 	+ sinଶ ఊಲଶ cosଶ ఊಳଶ ቁ. (7) 
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Note that in this game the sum of Alice's and Bob's payoffs is fixed and equals $஺ +$஻ = ݏ + The game has only one NE for γ஺ .ݐ = γ஻ = గଶ - at that point the players' 

payoffs are $஺ = $஻ = ௦ା௧ଶ  and none of them can increase his or her payoff by unilateral 

change of strategy (Flitney & Abbott, 2002). In fact, to get an equal reward 
௦ା௧ଶ  per each 

player, it is enough that one of them uses strategy γ = గଶ .  

The game restricted to Alice’s ܣመ, ෡′ܣ  and Bob’s ܤ෠, ෡′ܤ  strategies is in fact a constant 
sum game. The quantum PD has infinitely many NEs, each determined by three initial 
parameters of Alice’s strategy ܣመ = ෡ܷ(ߠ஺, ߶஺,  ஺). Therefore we have shown that anߙ
appropriate choice of mixed quantum strategies can provide both players a result only 

slightly worse than mutual cooperation (remember that ݎ > ௦ା௧ଶ  by PD definition). 

Taking into account that in the classical PD the payoff of the only NE is(݌,  the ,(݌
quantum game gives players a much better equilibrium, not achievable in the classical 
game. 

Note that, in particular, if we set(ߠ஺, ߶஺, (஺ߙ = (0, 0, 0), then 

መܣ  = ቀ1 00 1ቁ = ,መܫ ෠ܤ = ቀ 0 −݅−݅ 0 ቁ =  ො௫ (8)ߪ݅−

and 

෡′ܣ  = ቀ݅ 00 −݅ቁ = ,ො௭ߪ݅ ෡′ܤ = ቀ0 −11 0 ቁ =  ො௬. (9)ߪ݅−

Strategies	ܣ෡ , ෡′ܣ , ෠ܤ , ෡′ܤ , lead, up to a constant, to four matrices (an identity matrix plus 
three Pauli matrices) from the group of unitary matrices	ܷܵ(2). The Pauli matrices ߪො௫, ,ݔ ො௭ are generators of rotations by the angle π about theߪ ො௬ andߪ  axes ݖ and ݕ
respectively (green, blue and red circles at Figure 1).  

 
 

5. Is it possible to use PD quantum equilibria? 
 
Figure 3 shows PD utility diagram (for	ݐ = ݎ ,5 = ݌ ,3 = 1and	ݏ = 0) with four 

classical strategies (ܥ, ,(ܦ ,ܥ) ,(ܥ ,ܦ) ,ܦ)and (ܥ  A series of red lines corresponds to .(ܦ
pairs of classical strategies (ߠ஺,ߠ஻) with constant ߠ஺	while blue lines correspond to (ߠ஺,ߠ஻) with constant	ߠ஻. The arrows point the players' preferences and the only classical 
NE is at the point	(ܦ, ,ܥ) Black line linking points .(ܦ ,ܦ) and (ܦ  refers to a game ,(ܥ
of constant sum $஺ + $஻ = ݏ + ݐ = 5 and comprises all payoffs of Alice's meta-
strategies cosଶ ఊಲଶ መܣ + sinଶ ఊಲଶ ෡′ܣ  and Bob’s meta-strategiescosଶ ఊಳଶ ෠ܤ + sinଶ ఊಳଶ ෡′ܤ . 
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FIGURE 3. 
Prisoner’s Dilemma utility diagram 

 

 
 

PD utility diagram for	ݐ = ݎ ,5 = ݌ ,3 = 1	and	ݏ = 0. Regardless of Alice's mixed strategies 
(red lines), the best strategy for Bob (arrows) is	ܦ. Likewise in case of Bob's mixed strategies 
(blue lines), the best strategy for Alice is	ܦ. The quantum PD has NE for the pair of meta-

strategies ൬ଵଶ ൫ܣመ + ᇱ෡ܣ ൯, ଵଶ ൫ܤ෠ +  ᇱ෢൯൰ which is far more favorable than NE for classical PDܤ

strategy	(ܦ,  .(ܦ
 

As shown in the previous section, the only NE here corresponds to the pair of  

meta-strategies൬ଵଶ ൫A෡ + Aᇱ෡ ൯, ଵଶ ൫B෡ + Bᇱ෡ ൯൰. Due to characteristic entanglement of  

classical strategies (C, D) and	(D, C), quantum equilibrium gives the players payoff  ௦ା௧ଶ = 2.5, which is more favorable than the classical equilibrium and not achievable 
using classical strategies.  

Bringing PD to a constant sum game is only possible in a quantum manner. An 
analysis of this solution shows that its essence is in specific correlation of the 
'cooperation' - 'defection' solutions, in such a way that players are unable to foresee 
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whether their strategies lead to one or other option. When Alice chooses strategy ܣመ 
or ܣ′ she does not know whether Bob responds with ܤ෠  or ܤ′෡  strategy, so she does 
not know whether her move is 'cooperation' or 'defection'. The same applies to Bob's 
strategies. With that kind of strategy selection the quantum PD is then led to the 
matching pennies - zero sum game. This game has no pure strategy NE and the only 
NE is in mixed strategies - each player chooses any option with equal probability. If 

one of the players uses this strategy, then his payoff is at lest 
௦ା௧ଶ  therefore it is his quantum 

reservation point which is much better than	݌, which can only be guaranteed be the 
classical NE strategy. 

Naturally, here appears a question whether the quantum version of PD can be used 
to resolve negotiations, which may have a nature of the prisoner's dilemma. Examples 
from different areas indicate that quantum strategies are better than classical in cases 
such as solving stock and market game issues [Piotrowski, Sładkowski, 2002], as well as 
auction and competition issues [Piotrowski, Sładkowski, 2008], gambling [Goldenberg, 
Vaidman, Wiesner, 1999] or artificial intelligence [Miakisz, Piotrowski, Sładkowski, 2006]. 
As shown in this paper, solving a dilemma using quantum strategies could lead to better 
outcomes than using classical solutions. Since classical PD inevitably leads negotiators to 
the only rational solution, which is mutual refusal of cooperation, which leads to 
punishment for lack of cooperation. Quantum PD has NE yielding much better 
payoff, which is an average of 'temptation to betrayal' and 'sucker's payoff'. Is it in 
fact possible to use quantum strategies in everyday life?  

One of the market processes regulated by PD is a price equilibrium known as the 
Nash ‘beautiful equilibrium’. Companies which are likely to sell its products with higher 
prices, de facto decrease their prices in order to optimize profits [Dixit, Nalebuff, 2008]. 
Here, a PD shows that bilateral (or multilateral) cooperation, which is to maintain the 
high prices, is in an almost impossible market situation because there will always be 
a company which wants to sell cheaper ('defection'), compensating for the lower prices 
by increasing the number of customers and abandoning the more expensive manufacturer 
(who 'cooperates') without customers. However, in some cases PD mechanism does 
not work properly, as in the example of price collusion. A good example is an incident 
known from 1950s which happened on American turbine market [Dixit, Nalebuff, 
2008]. Three companies made an agreement that they would use inflated prices. But 
under condition that, depending on the date of the invitation to tender, one of them 
would win. The winner in each auction took everything (temptation to betrayal), the 
others were left with nothing (sucker's payoff). Randomness of announcing tendering 
periods ensured that all partners earned, each in their time. The most important issue 
in the whole affair was to correctly correlate the company that should win the tender with 
the moment of its publication. They had to be correlated in such a way that interested 
parties had no doubt and nobody else could to predict the algorithm (because price 
collusion is illegal). If the price-fixing partners used an algorithm based on quantum 
entanglement, none of external observers could prove them collusion. Nevertheless, 
the directors of the companies got imprisoned because they used a less sophisticated, 
easy to uncover correlating system – a winner of the tender was chosen on basis of 
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the lunar calendar – each company won depending on the number of days that had 
elapsed since the new moon.  

Another example of the possible use of quantum solution would be the situation where 
companies, competing on the same market, come to an agreement to limit the amount 
of advertisements of their products to the agreed level. Unless any of them will not 
increase their quota, the number of customers and profits reach certain equilibrium. 
However, there is always a temptation for a given company to increase the amount 
of adverts above the agreed level (‘defection’). This will lead to the increase of the number 
of customers and their profits but only temporarily, until other parties do the same. 
Finally they will reach the same or similar customers’ equilibrium but their profits will 
be smaller (‘punishment payoff’) as they all spend more money for advertisements. In 
the quantum game the NE assures that at the same time only one company is exceeding 
the quota of adverbs while the other keeps the limits, the roles of companies are changing 
in time in a random manner. Therefore, the quantum setup designed to coordinate the 
amount of advertisements can lead to more favorable results for competing 
companies.  

 
 

6. Summary and discussion 
 
In negotiations there is always a difference in the knowledge level of involved parties. 

The players often have no interest in disclosing all of their preferences because it may be 
used against them by others. On the other hand, in integrative negotiations the full 
knowledge of preferences of both parties can help in finding the optimal possible result. 
This contradiction is common in negotiations and can only be resolved by mutual 
disclosure of both parties preferences. Alternatively, they can use the third-party arbiter, 
who secretly collects information from both parties and then proposes optimal solution 
that is binding on the parties. In this paper we show that quantum entanglement can play 
the role of such an arbiter. 

We formulate negotiation as a quantum game where the players strategies correspond 
to unitary transformations of the given initial state in the Hilbert space. Quantum 
strategies are correlated through the mechanism of quantum entanglement and the result 
of the game is obtained by the collapse of the resulting transformed state. The range 
of strategies allowed for quantum players are richer than in a classical case and therefore 
the result of the game can be optimized. On the other hand, the quantum game is 
completely save against eavesdropping and the players can be assured that this type 
of quantum arbitration is fair. 

In quantum games an essential element of a game mechanism is entanglement. Does 
this phenomenon also have its counterpart in the real classical game? Can macroscopic 
objects that are controlled or observed only by our senses be entangled? These are open 
questions. Problems with decoherence of the wave function means that even at a level 
of well-controlled experiments, held in extreme isolation from surroundings, it is difficult 
to maintain two entangled qubits. Building a quantum computer whose work is based 
on a register with a number of entangled qubits, transformed by unitary operations of 
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quantum gates, which is capable of solving practical problems, using quantum algorithms, 
or capable of simulation of quantum games, is a real challenge to modern physics. 
Over the last decade, these challenges have been successfully undertaken, which led 
to building of first quantum computers [Vandersypen, Steffen, Breyta, Yannoni, Sherwood, 
2001; Haroche, 2012; van der Sar, et al., 2012]. Progress of physics and technology 
creates opportunities for application of quantum games to real life problems. 
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