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EXPANDING WORDNET WITH GLOSS AND
POLYSEMY LINKS FOR EVOCATION STRENGTH

RECOGNITION

Abstract

Evocation — a phenomenon of sense associations going beyond standard (lexico)-semantic relati-
ons — is difficult to recognise for natural language processing systems. Machine learning models
give predictions which are only moderately correlated with the evocation strength. It is believed
that ordinary graph measures are not as good at this task as methods based on vector repre-
sentations. The paper proposes a new method of enriching the WordNet structure with weighted
polysemy and gloss links, and proves that Dijkstra’s algorithm performs equally as well as other
more sophisticated measures when set together with such expanded structures.
Keywords: evocation; WordNet; glosses; polysemy; evocation strength; semantic relations

1 Introduction
Evocation is a psycho-linguistic phenomenon of associations arising between specific word sen-
ses that go beyond standard (lexico)-semantic relations. For example, ankle-n-1, in the sense of
‘a gliding joint between the distal ends of the tibia and fibula and the proximal end of the talus’,
evokes swell-v-3, in the sense of ‘expand abnormally’ (Boyd-Graber et al., 2006; Nikolova et al.,
2009). As such, they resemble simple free word associations that immediately come to the mind
of a native speaker when presented with a stimulus word, e.g. girl and boy, or harm and bad. Both
evocations and word associations are asymmetric and weighted relations, yet word associations do
not specify which particular word senses are involved (Ma, 2013).

From a theoretical perspective, the phenomenon of evocation should also be distinguished
from word/sense similarity and semantic relatedness. Relatedness is usually recognised as more
general than similarity (Agirre et al., 2009; Ballatore et al., 2014; Faruqui et al., 2016). Following
Cramer (2008), we treat the three concepts, i.e. similarity – relatedness – evocation, as forming
a chain of subsumed senses, with similarity as the narrowest and evocation as the broadest one.
Semantic similarity signifies close semantic resemblance (such as synonymy, near-synonymy or
hyponymy). Relatedness covers both close semantic relations as well as more distant relationships
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(such as topic generalisation, remote superordinate chains or meronymy/holonymy). Evocation
allows for even weaker semantic associations. In particular, the association relationship includes
co-hyponyms, opposites, collocates, superordinates and synonyms (Cruse, 2006, p. 191). The three
semantic relationships may link word senses or words themselves.1

Evocation recognition can facilitate such natural language processing (henceforth, NLP) tasks
as measuring textual similarity and relatedness or detecting coreference (Hayashi, 2016). Recogni-
sing evocations and assessing their strength remains a very difficult task for NLP (Cramer, 2008).
This is due to the lack of large scale language resources that cover this specific type of relations.
Currently, there exists a gold standard evocation data set, namely The Princeton Evocation Data.2
It consists of 120,000 sense pairs annotated by 20 trained undergraduates from Princeton Univer-
sity (Boyd-Graber et al., 2006). The experiment was conducted as follows. Pairs of word senses
were randomly selected from Princeton WordNet (Fellbaum, 1998; Miller & Fellbaum, 2007).3
Every pair of word senses was annotated by at least three annotators with respect to the degree of
its association strength ranging from 0 to 100. Due to the random design of the experiment, two-
thirds of the word sense pairs selected were judged to be completely unrelated (receiving a score
of 0).

This paper presents a novel method of optimising the WordNet structure for the purposes of
evocation strength recognition. Graph distance has been used as a measure of semantic dissimi-
larity between concepts. Following the suggestions of Hayashi (2016, p. 1666), an effort has been
made to improve the graph topology in order to achieve more adequate distance measurements.
The WordNet graph has been extended with new types of edges, namely gloss links and polysemy
links (Sec. 3.1). The links have been directed and their weights have been optimised in concurrent
experiments (Sec. 3.2). A simple evocation strength measure is proposed, being the inverse of
Dijkstra’s distance (Sec. 3.3). It works equally as well as the best individual measures reported
in the literature, despite the fact that it is much simpler (Sec. 3.4). Including gloss and polysemy
links significantly increases the efficiency of evocation recognition when compared to the bare
WordNet graph. The proof that such a way of enriching the WordNet structure is possible is the
main contribution of the present paper.

2 Related work
The task of evocation strength recognition is a challenge for NLP. Sense associations spread in
various directions and are asymmetrical (Cramer, 2008). There are no language resources designed

1We assume the following set of definitions: (Def. 1) Orthographic word or token is a string of letters (and other
symbols) of the English alphabet delimited in writing usually by spaces (Lyons, 1977, pp. 49–50; Saeed, 2003, pp.
55–56). (Def. 2) Word-form is either an orthographic word (in the case of one-word lexical items), or a sequence
of orthographic words (in the case of multi-word lexical items, treated as ‘words with spaces’) as seen from the
perspective of inflection, see Saeed (2003, p. 56), Lyons (1977, p. 50), Sag et al. (2002). (Def. 3) Lemma is the
canonical word-form that was chosen to represent other inflectional forms in a dictionary as an entry term (Lyons,
1977, p. 50; Saeed, 2003, p. 56; Svensen, 2009, p. 93). (Def. 4) Word is the class of all word-forms equivalent
— according to English inflectional patterns — to the same lemma and representing one sense or several related
senses. (Ex.) For instance, we treat the word [go] as the class of all semantically related word-forms, including go,
goes, going, went, gone, equivalent to each other, since they all might be equated with the lemma go according
to inflectional rules (like adding the affix -(e)s to a stem and irregular verb alternations codified in grammars of
English). (Remark 1) We may operationalise the notions of lemma, word and equivalence relation by taking the
output of existing English lemmatizers, ascribing to a given word-form its lemma. (Remark 2) For WordNet words
the definition of the term lemma could be narrowed to basic word-forms of nouns, adjectives, verbs, and adverbs.
Hence, we regarded nominal, adjectival, verbal or adverbial word-forms as representing the same word if only they
shared the same lemma in WordNet and were semantically related. (Remark 3) Because of the isomorphism between
lemma and its word/equivalence class, we talked about lemmas in such a manner as if we would describe words
themselves. (Def. 5) Sense or meaning is the triple <lemma, POS, sense number>, where parts of speech and sense
numbers (called variants) are taken from Princeton WordNet.

2https://wordnet.cs.princeton.edu/downloads.html
31,000 synsets — sets of synonymous lexical units — classified as denoting the so called core concepts were

involved in the experiment.
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to aid evocation recognition. WordNets mainly focus on paradigmatic relations, while various
thesauri and ontologies capture special vocabulary and taxonomic dependencies. Valence lexicons
cover predicate-argument relations. Therefore, the Princeton evocation data set was intended to
complement the taxonomy of WordNet.

Ordinary semantic similarity measures have proven to be completely inefficient in capturing
evocation strength. When Boyd-Graber et al. (2006) implemented them, they achieved only 0.131
of Spearman’s ρ.4 Hayashi (2016) confirmed this finding — his individual WordNet-based mea-
sures achieved Pearson’s correlation r = 0.15 at most. His results were much better for complex
vector-space-based measures, with max(r) = 0.30 (cf. Figure 8 at the end of this paper). His final
model, performing at r = 0.4391, was a neural network combining a dozen individual measures,
with no feature playing the central role. According to Hayashi, further advancement in the field of
evocation recognition should proceed in two complementary directions: (i) applying more sophi-
sticated machine learning frameworks and (ii) gathering and merging new and better features. He
suggested making use of high quality word/sense vector representations and relational features,
as well as more adequate semantic networks (in which distance measures could be applied). Most
of Hayashi’s best individual measures rely on calculating distances in different semantic spaces.
Two out of four of his best measures reaching r values higher than 0.2 are cosine functions (for
word2vec and AutoExtend vectors), and one is the AutoExtend difference of two vectors.

Cattle and Ma (2017) focused on predicting word association strength in the Princeton evo-
cation data set. Although the task was different (instead of concept evocations, they were seeking
word associations), the results were strikingly similar to those obtained by Hayashi. Again, co-
sine vector similarities (such as w2v, GloVe and w2g embeddings) proved to be the best. More
recently, Kacmajor and Kelleher (2019) tested several individual measures of word similarity on
the evocation set. The authors divided their measures into four broad groups: (i) knowledge-based
distance measures, (ii) measures utilizing vector space models constructed out of existing lexical
resources, (iii) distributional vector space measures based on large corpora, and (iv) hybrid ap-
proaches mixing knowledge-based and distributional approaches. The main claim of their paper
is that measures based on WordNet and other lexical resources are inadequate in the evocation
task, because most WordNet/lexical resource relation instances are taxonomic in nature. On the
other hand, distributional and hybrid models perform well with intuitive evocation associations.
It seems that the WordNet structure itself is unfit for the task of evocation recognition.

3 Experiments
This paper will show that it is possible to construct a WordNet-based distance measure which
performs better than other knowledge-based features, and no worse than vector space-based me-
asures. We made use of the implementation of Dijkstra’s algorithm in the igraph library in R
(Csardi & Nepusz, 2006).

The experiment design was as follows:

• Firstly, four different versions of the WordNet graph were constructed and the most successful
one (achieving the best Pearson’s r correlations) was selected. The graphs consisted of three
different types of semantic relations: (i) pure WordNet links, (ii) gloss links, and (iii) relations
between different senses of the same polysemous lemma (Sec. 3.1). Next, Dijkstra’s distance
measuring algorithm was applied to the obtained structures in order to obtain the best
predictions of evocation strength.

• Secondly, local optima were identified in parameter spaces (the axes represented the costs
of edges in the algorithm, Sec. 3.2).

4Boyd-Graber et al. (2006) checked simple path measures, as well as the Lesk measure. Finally, the cosine
between Latent Semantic Analysis vectors turned out to be the best measure.
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• Having found the minimum points, in the third step several similarity measures in the form
of functions of Dijkstra’s distance: Sim = f(Dist) were evaluated. Both graph structures
and similarity functions were compared. Based on several quantitative-qualitative criteria,
one measure was chosen (Sec. 3.3).

• Finally, the efficiency of the measure in the evocation recognition task was tested on the vali-
dation data set. Different graph topologies were compared together with evocation measures
from the literature (Sec. 3.4).

Since the proposed association strength function was strikingly simple (cf. Sec. 3.3), the main
emphasis was placed on the optimization of the WordNet structure. The idea was to give it a shape
that would facilitate evocation recognition. The optimisation procedure and the final evaluation
were run on three independent subsets of the evocation data set:5

• S1 — 2,000 evocation pairs used for checking the efficiency of the WordNet graph and its
extensions, and for tuning the weights of edges,

• S2 — 10,000 sense pairs used to determine the choice of the best similarity measure,

• S3 — the final testing data set of 108,000 evocation pairs for choosing the best graph
topology.

The experiment proceeded in the following manner: (i) four differently structured WordNet
graphs were constructed, (ii) various combinations of relation weights and fitted response surfaces
were tested on two testing samples (10% of the total number of instances, samples S1 and S2).

During the preparatory phase, the efficiency of Dijkstra’s algorithm was tested on differently
structured WordNet graphs. Evocation strength recognition was performed on the smaller set of
2,000 evocation pairs (S1). Networks were unweighted. Technically, it was obtained by applying
the weight (cost) of 1 to all edge types (cf. Table 1).

Table 1: Edge type combinations tested on unweighted graphs and on the testing set S1. Symbols:
wn — WordNet relations, g — gloss relations, polyWN — the set of all pairs of polysemous
lemma senses taken from WordNet, polySC — the set of all pairs of polysemous lemma senses
co-occurring in SemCor altogether with polysemy patterns and top level noun and verb synsets,
N — number of relation instances, d — directed edges, u — undirected links. Please note that the
calculated correlations do not contain the cases of disconnected graph edges (NA and Inf values
were excluded).

graph r directionality vector of
configuration Dist of links costs

wn -0.167 (d) (1)
wn+g -0.189 (d, d) (1, 1)

wn+g+polyWN -0.184 (d, d, u) (1, 1, 1)
wn+g+polySC -0.214 (d, d, d/u) (1, 1, 1)

The four graph structures will be inspected in the forthcoming sections.

5All subsets were randomly chosen from the original data set.
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3.1 Relation types
The graphs were constructed out of the following types of edges:

• directed WordNet edges (380,000 links in total, symbol wn);

• directed gloss relation instances (820,000 links, marked with g);

• bidirectional polysemy links between different WordNet senses (400,000 links in total; (n−1)n
2

links for each n-sense lemma, symbol polyWN);

• a heterogenous set of edges made out of SemCor6 polysemy links and upper synsets of
nominal and verbal WordNet hierarchies (marked jointly as polySC), including:

– directed polysemy links collected from the SemCor corpus; the links were established
every time a sense pair appeared in a very similar context;

– polysemy patterns extracted from the previous set via a generalization from a given
polysemy pair to a pair of corresponding semantic domains (‘lexicographer files’ of the
considered synsets);

– top level noun and verb WordNet synsets linked to their semantic domains via undi-
rected edges to facilitate linking synsets with the top level of polysemy patterns.

It is important to distinguish between two different types of WordNet relations: paradigmatic
relations (hyponymy, meronymy, antonymy etc.) and gloss relations, emerging from the WordNet
gloss annotation process (cf. Suderman & Ide, 2006).7 WordNet was first tested without glosses
(symbol: wn), and was then later tested with the addition of glosses (symbol: wn+g), see Table 2
below.

Table 2: Testing graph structures. WordNet relations were given the weight of “1”, weights X1 and
X2 were tested in the range [0, 12] in order to find optimal values. Symbols are identical as those
used in the previous table. Testing set S1.

graph N directionality vector of
configuration 106 of links costs

wn 0.38 (d) (1)
wn+g 0.82 (d, d) (1, X1)

wn+g+polyWN 1.20 (d, d, u) (1, X1, X2)
wn+g+polySC 0.83 (d, d, d/u) (1, X1, X2)

Next, the WordNet graphs were extended further by adding polysemy links. Polysemy is a phe-
nomenon in which the same word-form constitutes a sign for different related meanings (Cruse,
2006, pp. 133–134).8 Polysemous lemmas are to be understood as those WordNet lemmas which

6WordNet sense annotated SemCor corpus (Chklovski & Mihalcea, 2002), v. 3., can be obtained from https:
//web.eecs.umich.edu/~mihalcea/downloads.html.

7The data set can be obtained from the WordNet Gloss Project site, v. 1.0, https://wordnetcode.princeton.
edu/glosstag.shtml.

8The most frequent words possess the high level of ambiguity (cf. Zipf’s law; Zipf, 1945). For instance, Merriam
Webster Pocket Dictionary gives 63 meanings for the word go (Small et al., 1988). In Oxford Lexico (https:
//www.lexico.com/definition/go) the same word received 47 distinct senses: among others ‘move from one place
to another; travel’, ‘leave; depart’, ‘proceed or turn out in a specified way’, ‘(of a machine or device) function’
or ‘an attempt or trial at something’ (a noun sense). For Natural Language Processing this ambiguity is very

https://web.eecs.umich.edu/~mihalcea/downloads.html.
https://web.eecs.umich.edu/~mihalcea/downloads.html.
https://wordnetcode.princeton.edu/glosstag.shtml
https://wordnetcode.princeton.edu/glosstag.shtml
https://www.lexico.com/definition/go
https://www.lexico.com/definition/go
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possess two or more semantically related senses.9 Polysemy should be carefully discerned from
homonymy, that is from accidental relationships between word meanings (Allen, 2014, p. 150n).10
In contrast to real polysemy cases, homonymous sense pairs are usually not related at all (Lyons,
1995, p. 59). Establishing links between semantically related WordNet senses is important, because
the lexical net does not possess explicit information on the sense relationship.

In our experiments we tested the result of adding combinations of all lemma senses.11 The
polyWN set counted 200,000 undirected links. We also took the SemCor and inspected the corpus
characteristics of polysemy patterns. It was assumed that those lemma senses and their semantic
domains which co-occurred in the very same text were semantically related.12 The relation was
kept directed and forced to go from the preceding sense/semantic domain to the succeeding one.
7,100 sense pairs were collected from SemCor. Below are examples of polysemy:

buffer-n-1 [n:substance] ‘(chemistry) an ionic compound that resists changes in its
pH’
→ buffer-v-1 [v:change] ‘add a buffer (a solution)’

time-n-2 [n:time] ‘a period of time considered as a resource under your control
and sufficient to accomplish something’
→ time-n-3 [n:time] ‘an indefinite period (usually marked by specific attributes or
activities)’

Taking into account the semantic domains of all senses (the so called lexicographer files), a small
directed net of 800 relation instances was obtained. Below we give the subset of the relations for
the node [n:animal]:

[n:animal] ↔ [n:act]
[n:animal] ↔ [n:body]
[n:animal] ↔ [n:food]
[n:animal] ↔ [n:person]
[n:animal] ↔ [n:substance]
[n:animal] → [v:cognition]
[n:animal] → [v:competition]
[n:animal] ↔ [v:motion]

This net reflects the hidden relationships between different semantic categories. We call them
polysemy patterns and use them to pin up the upper levels of nominal and verbal WordNet

problematic, since in usage it is very difficult to discern all different senses or shades of meaning, and the choice
of proper dictionary is very important (Agirre & Edmonds, 2007). Some dictionaries have very coarse-grained
sense distinctions, while others possess very fined lists of meanings. WordNet, because of its vast computational
applications, is often used as a source of word senses, however, at the same time, it is criticised for its overly detailed
sense distinctions (Edmonds, 2004). Clustering WordNet senses seems a reasonable solution to the problem (Agirre
& Lopez de Lacalle, 2003). Yet another solution is to seek for the so called polysemy patterns, that is regular
polysemy types (Vicente & Falkum, 2017).

9Please note that we consider meanings belonging to distinct parts of speech as cases of polysemy of the same
lemma, not the result of word formation. Hence, we treat the unmarked change of word category as semantic deriva-
tion. In theoretical linguistics the status of the conversion (zero-derivation) sense pairs is not entirely clear (Schmid,
2007). Although many researchers treat zero-derivation as a purely word-formational process, some portray it as
mere syntactic change, cf. the description of theoretical positions in Schönefeld (2005, pp. 135–138). For instance,
Baker (2003) ascribes a syntactic category (POS) not lexemes but syntactic phrases (pp. 266n). Lexicographers
often put related meanings characterised by different parts of speech into the same lexical entry, differentiating it
from homonymy cases (Saeed, 2003, p. 80). They are treated as polysemous senses representing the same lemma
(Svensen, 2009, pp. 95, 97).

10These accidental relationships can be due either to the converging evolution of native vocabulary, or to loans
from other languages (Jackson, 2002, pp. 2–3).

11Hence also with homonymy.
12In such a manner we overcame the challenging homonymy problem.
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hierarchies, i.e. those synsets that do not possess any hypernym.13 We made the latter links14
undirected in order to enable free movement up and down — from the polysemy patterns net and
back again. The net consisted of 3,400 directed links. In comparison to WordNet paradigmatic
relations, gloss links and the huge polysemy set derived from WordNet, the size of the polySC set
is rather modest.

3.2 Setting weights
Each of the four relation types described above was given a weight (the cost of Dijkstra’s algo-
rithm). WordNet links were equipped with a weight of “1”, all other link types were tested for the
optimal values in the range [0, 12]. Again, the tests were conducted on the same testing sample of
2,000 evocation pairs (S1). For the original WordNet graph (wn), the correlation values of Pear-
son’s r and Spearman’s ρ measures were calculated. Then, we merged the base graph with glosses
(wn+g) and checked correlations in a systematic one-factor design (Fig. 1). The response curve r(g)
is a polynomial of the fifth degree (adjusted R2 = 0.8956, p-value of the F -test = 1.219×10−9). It
suggests that finding an adequate optimization solution is a demanding task. The long right tail
of the response curve monotonously climbing up to correlations close to r ∼ −0.10 — proves the
importance of using the gloss relation set. We estimated the global minimum location at (g = 1.4).

Figure 1: Directed WordNet graph expanded with gloss edges (wn+g): Pearson’s correlation r
between the evocation strength and Dijkstra distance. The global minimum is clearly visible in
the range [1, 2].

The two remaining polysemy graphs were extensions of the wn+g graph, hence we expected
response surfaces of a higher degree. For the 2-factor (X1−X2) problem we conducted a quadru-
ple third order design (CCD Augmented by I-optimal design; cf. Yang, 2008, Tab. 20), because
ordinary second order designs were inefficient. The response surfaces of the fourth and fifth order
were fitted to the experimental points with acceptable adjusted R-squared values.

Figures 2 and 3 present the response surface for the wn+g+polyWN graph. Generally speaking,
the plot reproduces the shape of the 1-factor r(g) response curve with a long tail stretching out
to high g weights and a valley of minima extending meridionally for the wide range of polyWN
values. Comparing the wn+g minimum and the ravine of the wn+g+polyWN graph, one may notice
that the optimal area is shifted to higher g values. From the two deepest minima we chose the one
deposited in the point g = 2.5, polyWN = 3.2.

The shape of the SemCor polysemy response surface (Fig. 4 and 5) is a twin to the WordNet
polysemy graph, but the localisation of the optimum area is closer to the original wn+g value.

13In the case of nouns we took all nouns that did have a hypernym marked with the [n:Tops] domain).
14That is from synsets to domains and vice versa.
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Figure 2: Response surface for the WordNet polysemy graph: the 4th order polynomial, adj.
R2 = 0.81, p-value of F -test = 1.329× 10−13, sample S1.

Figure 3: Contour plot for the WordNet polysemy complete graph, the local optimum at (2.5, 3.2)
gives the smallest r value.

It is probably caused by different cardinalities of the two polysemy sets. The polyWN is a very
large matrix consisting of 200,000 bi-directional edges. Its mass of edges linking different parts of
graph, especially different parts of speech, greatly affects the length of paths within the graph. The
polySC set, though 200 times smaller, is much more accurate; it does not contain many homonymy
pairs or too distant relationships. The fitted models suggest the better performance of the polySC
network.

We evaluated how sufficient all these WordNet topologies are on another sample set S2.

3.3 Similarities
We treated weights as a cost of every step and aimed to establish the optimal set of these para-
meters. We identified the local optima of the discussed network models using the S1 set. We will
now turn our attention to the evaluation of the efficacy of all these structures. The second testing
set, consisting of 10,000 evocation pairs, was used here (the S2 set). Table 3 collates the data,
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Figure 4: Response surface for the SemCor polysemy graph: 5th order polynomial, adj. R2 = 0.93,
p-value of F -test < 2.2× 10−16, sample S1.

Figure 5: Contour plot for the SemCor polysemy graph, the local optimum is at (1.75, 2).

while Figure 6 presents differences in the correlations between Dijkstra’s distance and evocation
strength. All three expanded WordNet graphs proved to be better at predicting evocation strength
based on the bare Dijkstra’s Dist measure.

Following Ge & Qiu (2008, p. 382), for this task we employed three measures of semantic
similarity, where Dist is calculated with Dijkstra’s algorithm (Cormen et al., 2001, Sec. 24.3):

Sim1 =
1

Dist+ 1
, (1)

Sim2 =
1

Dist2 + 1
, (2)

Sim3 =
1

eDist
, (3)

If no path could be established, we ascribed to a sense pair the distance of maximum shortest
path length in a graph plus one. To this set of similarity functions we also added a natural,
although theoretically not so plausible, measure — the inverse of Dijkstra’s distance:
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Table 3: Local optima for different expansions of the WordNet graph and different weights (the
cost of Dijkstra’s algorithm) tested on the set of 10,000 evocation pairs randomly sampled from
the whole set (the set S2). The correlation is given for pairs of Dijkstra’s distances and evocation
strength values.

relation vector r ρ

types of costs Dist Dist

wn (1) -0.128 -0.147
wn+g (1,1.4) -0.197 -0.191

wn+g+polyWN (1,2.5,3.2) -0.190 -0.184
wn+g+polySC (1,1.75,2) -0.204 -0.198

Figure 6: 95% bootstrap confidence intervals (B=1,000 iterations) of the Dijkstra’s Dist measure
for four inspected graph structures and optimized weights values.

Sim0 =

{
1

Dist Dist > 1

1 Dist ≤ 1
(4)

After the transformation of the Dist measure into the measures of similarity Sim0–Sim4, we
obtained higher correlation ratios. Table 4 presents the values of Pearson’s correlation for all Sim
functions and the S2 data set. For all measures and graphs, we also prepared bootstrap samples to
assess their distributional properties (the number of iterations B = 1000). We checked standard
deviations and calculated mean deviations as well as ranges.15 Sim2 gives the highest correlations,
while Sim1 the lowest. Sim2 and Sim3 measures are characterised by relatively large variances,
while Sim0 and especially Sim1 functions preserve smaller variances. The graph of Cullen and

15We define range as a difference between a maximum and a minimum value.
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Frey proves that all measures gave values close to the normal distribution, with Sim2 and Sim0
being the closest to the point (0,3).

Table 4: Local optima for different expansions of the WordNet graph and different weights (the
cost of Dijkstra’s algorithm) tested on the set of 10,000 evocation pairs randomly sampled from
the whole set (the set S2). The correlation is given for pairs of similarity and evocation scores.
The symbol “sd” stands for standard deviation.

graph r
configuration Sim0 Sim1 Sim2 Sim3

wn 0.213 0.199 0.229 0.223
wn+g 0.251 0.241 0.259 0.255

wn+g+polyWN 0.246 0.236 0.251 0.235
wn+g+polySC 0.258 0.249 0.265 0.254

mean r 0.242 0.231 0.251 0.242
mean sd 0.025 0.021 0.030 0.034

range 0.045 0.050 0.036 0.031

Figure 7: The Cullen and Frey graph for bootstrap distributions of all similarity measures.

For further experiments we have chosen the Sim0 measure, taking into account the qualitative-
quantitative criteria mentioned above. This measure gave high correlation values and was charac-
terised by small variance. It also ensured a relatively large range; its distribution was very close
to the normal distribution. Obviously, this decision is not fully objective and is a matter of a re-
searcher’s choice.
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3.4 Similarity measure efficiency
The optimizing procedure conducted on the S1 set (2,000 evocation pairs) led to the choice of the
most promising parameter values for gloss edges (g) and polysemy links (polyWN and polySC).
Correlations for Dijkstra’s distances and evocation strength improved after the optimalisation of
weights on the gloss-enlarged graph and still remained high after adding new polysemy links. The
set (10 pairs) was used to support the choice of the best similarity measure. The final evaluation was
performed on a large set of the remaining 90% of evocation pairs (S3) with the use of a compromise
measure Sim0. Despite a sharp disproportion in size between the testing sets and the validation set
(1 : 10 ratio), final experiments conducted on 107,000 evocation examples confirmed the following
findings:

• The optimizing procedure gave Sim0 the highest r values within the group of Hayashi’s
knowledge-based individual measures (Fig. 8, the group “K”).

• The simple similarity measure performed comparable to Hayashi’s best distributional indi-
vidual measures (Fig. 8, groups “KV” and “DV”).

• The most optimal WordNet configuration included glosses and SemCor polysemy links
(wn+g+polySC).

We performed a paired bootstrap test on six pairs of graphs at the 95% confidence level, using
the Bonferroni correction (the significance level of each paired test was adjusted to the 5

6% level).
Due to the large size of the S3 data set, most tests led to significant differences. It transpired
that the wn+g+polySC network model is the most suitable for evocation recognition (the mean
correlation of the Sim0 measure is 0.251). Sole WordNet relations (the graph wn) were much worse
than any of the extended structures (for details see Table 5).

Table 5: One-sided paired bootstrap percentile test for the difference between r values for Sim0
at the 95% confidence level. Symbols: “=” marks insignificant differences, while “>” and “<”
designate differences which are significant, wherein the former symbol is read as ‘a row is greater
than a column’, and the latter has the opposite meaning. The direction of the test was established
on the basis of the previous experiment (on S1).

graph wn wn+g wn+g+ r
configuration polyWN Sim0

wn = .209
wn+g > = .245

wn+g+polyWN > = = .246
wn+g+polySC > > > .251

4 Conclusions
The main contribution of this paper is the presentation of a novel method of optimizing lexical
net structure for the needs of evocation recognition. We started with a bare WordNet graph
and expanded it with glosses and polysemy links. In order to achieve better agreement with
gold standard evocation strength values, the graph relations were differentiated through different
weights (the cost of each edge) and optimized on a very small subset of the original data set. The
optimization process led to new network structures which gave distances better correlated with
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Figure 8: Efficiency of several evocation measures taken from Hayashi (2016). With “Sim0” we
mark our similarity measure (4) run on different WordNet structures. Symbols: DV — corpus-
based distributional vectors (ldaSim, w2vSim), K — knowledge-based measures (wupSim, lexNW,
dirRel), KV — WordNet-based vector spaces (posSim, autoexSim, relVec).

the evocation strength. The WordNet structure most optimal for the task was extended with gloss
relations and a small set of polysemy patterns and instances derived from the SemCor corpus.16
This fact may be evidence for the importance of polysemy links in the lexico-semantic system.

We also proposed an evocation measure in the form of inverse Dijkstra’s distance which per-
formed well not only when compared with other graph measures, but also in comparison with
sophisticated vector space models, of which some were highly-dimensioned (100− 300D vectors).
Contrary to the well-established opinion of the superiority of vector representations, it is probable
that the common denominator of all the successful individual measures is adequate distance me-
asuring methodology. Our simple knowledge-based measure has recently been reused — together
with some other credible individual measures — in a neural-network framework, with the overall
NN efficiency r = 0.4415, and has turned out to be the best feature of all those used (Janz &
Maziarz, in press).
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