Full-text resources of CEJSH and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


2023 | 37 | 1 | 18-33

Article title

The use of LA-ICP-MS as an auxiliary tool to assess the pulmonary toxicity of molybdenum(IV) sulfide (MoS2) nano- and microparticles

Content

Title variants

Languages of publication

Abstracts

EN
Objectives Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) has considerable applicative potential for both qualitative and quantitative analyses of elemental spatial distribution and concentration. It provides high resolutions at pg-level detection limits. These qualities make it very useful for analyzing biological samples. The present study responds to the growing demand for adequate analytical methods which would allow to assess the distribution of nanostructured molybdenum(IV) disulfide (MoS₂) in organs. It was also motivated by an apparent lack of literature on the biological effects of MoS₂ in living organisms. The study was aimed at using LA-ICP-MS for comparing micro- and nanosized MoS2 ditribution in selected rat tissue samples (lung, liver, brain and spleen tissues) after the intratracheal instillation (7 administrations) of MoS₂ nano- and microparticles vs. controls. Material and Methods The experimental study, approved by the Ethics Committee for Animal Experiments was performed using albino Wistar rats. This was performed at 2-week intervals at a dose of 5 mg/kg b.w., followed by an analysis after 90 days of exposure. The MoS₂ levels in control tissues were determined with the laser ablation system at optimized operating conditions. The parameter optimization process for the LA system was conducted using The National Institute of Standards and Technology (NIST) glass standard reference materials. Results Instrument parameters were optimized. The study found that molybdenum (Mo) levels in the lungs of microparticle-exposed rats were higher compared to nanoparticle-exposed rats. The opposite results were found for liver and spleen tissues. Brain Mo concentrations were below the detection limit. Conclusions The LA-ICP-MS technique may be used as an important tool for visualizing the distribution of Mo on the surface of soft samples through quantitative and qualitative elemental mapping.

Year

Volume

37

Issue

1

Pages

18-33

Physical description

Dates

published
2024

Contributors

author
  • Nofer Institute of Occupational Medicine, Łódź, Poland (Central Laboratory)
  • Nofer Institute of Occupational Medicine, Łódź, Poland (Department of Toxicology and Carcinogenesis)
  • QSAR LAB Ltd., Gdańsk, Poland
  • Nofer Institute of Occupational Medicine, Łódź, Poland (Department of Toxicology and Carcinogenesis)
author
  • Nofer Institute of Occupational Medicine, Łódź, Poland (Department of Chemical Safety)

References

  • Theiner S, Kornauth C, Varbanov HP, Galanski, Van Schoonhoven S, Heffeter P, Berger W, Egger AE, Keppler BK. Tumormicroenvironment in focus: LA-ICP-MS bioimaging of a preclinical tumor model upon treatment with platinum(IV)-based anticancer agents. Metallomics. 2015 Aug;7(8):1256–1264. https://doi.org/10.1039/c5mt00028a.
  • Costas-Rodríguez M, Van Acker T, Hastuti AAMB, Devisscher L, Van Campenhout S, Van Vlierberghe H, Vanhaecke F. Laser ablation-inductively coupled plasma-mass spectrometry for quantitative mapping of the copper distribution inliver tissue sections from mice with liver disease induced bycommon bile duct ligation. J Anal At Spectrom. 2017 Jun;32,1805–1812. https://doi.org/10.1039/C7JA00134G.
  • González de Vega R, Fernández-Sánchez ML, Pisonero J, Eiró N, Vizoso FJ, Sanz-Medel A. Quantitative bioimaging of Ca, Fe, Cu and Zn in breast cancer tissues by LA-ICP-MS.J Anal At Spectrom. 2017 Jan;32,671–677. https://doi.org/10.1039/c6ja00390g.
  • Sajnóg A, Hanć A, Koczorowski R, Makuch K, Barałkiewicz B. Usefulness of laser ablation ICP-MS for analysis of metallic particles released to oral mucosa after insertion of dental implants. J Trace Elem Med Biol. 2018 Mar;46:46–54.https://doi.org/10.1016/j.jtemb.2017.11.007.
  • Li Q, Wang Z, Mo J, Zhang G, Chen Y, Huang C. Imaging gold nanoparticles in mouse liver by laser ablation inductively coupled plasma mass spectrometry. Sci Rep. 2017 Jun;7(1):2965. https://doi.org/10.1038/s41598-017-03275-x.
  • Cruz-Alonso M, Fernandez B, Navarro A, Junceda S, Astudillo A, Pereiro R. Laser ablation ICP-MS for simultaneous quantitative imaging of iron and ferroportin in hippocampus of human brain tissues with Alzheimer’s disease. Talanta. 2019 May;197:413–421. https://doi.org/10.1016/j.talanta.2019.01.056.
  • Hille R, Nishino T, Bittner F. Molybdenum enzymes in higher organisms. Coord Chem Rev. 2011 May;255(9–10):1179–1205. https://doi.org/10.1016/j.ccr.2010.11.034.
  • Zapór L, Cytotoxicity Elicited by Molybdenum Disulphide in Different Size of Particles in Human Airway Cells. Rocz Ochr Śr. 2019 21:794–809.
  • Popławska M, Mikołajczyk U, Bujak-Pietrek S, New sector of employment – A review of data on nanoproduction, research and development in the field of nanotechnology in Poland. Med Pr. 2015 Aug;66(4):575–582. https://doi.org/10.13075/mp.5893.00240.
  • Sobańska Z, Sitarek K, Gromadzińska J, Świercz R, Szparaga M, Domeradzka-Gajda K, Kowalczyk K, Zapór L, Wąsowicz W, Grobelny J, Ranoszek-Soliwoda K, Tomaszewska E, Celichowski G, Roszak J, Stępnik M. Assessment of acute toxicological effects of molybdenum(IV) disulfide nanoand microparticles after single intratracheal administration in rats. Sci Total Environ. 2020 Nov;742:140545. https://doi.org/10.1016/j.scitotenv.2020.140545.
  • Lewis RC, Meeker JD. Biomarkers of exposure to molybdenum and other metals in relation to testosterone among men from the United States National Health and Nutrition Examination Survey 2011–2012. Fertil Steril. 2015 Jan;103(1):172–178. https://doi.org/10.1016/j.fertnstert.2014.09.020.
  • Lewis RC, Johns LE, Meeker JD. Exploratory analysis of the potential relationship between urinary molybdenum and bone mineral density among adult men and women from NHANES 2007–2010. Chemosphere. 2016 Dec;164:677–682. https://doi.org/10.1016/j.chemosphere.2016.08.142.
  • Liu FJ, Dong WY, Zhao H, Shi XH, Zhang YL. Effect of molybdenum on reproductive function of male mice treated with busulfan. Theriogenology. 2019 Mar;126:49–54. https://doi.org/10.1016/j.theriogenology.2018.12.002.
  • Domeradzka-Gajda K, Nocuń M, Roszak J, Janasik B, Quarles CD Jr, Wąsowicz W, et al. A study on the in vitro percutaneous absorption of silver nanoparticles in combination with aluminum chloride, methyl paraben or di-n-butylphthalate. Toxicol Lett. 2017 Apr;272:38–48. https://doi.org/10.1016/j.toxlet.2017.03.006.
  • Hałatek T, Stanisławska M, Świercz R, Domeradzka-Gajda K, Kuraś R, Wąsowicz W. Clara cells protein, prolactin and transcription factors of protein NF-ĸB and c-Jun/AP-1 levels in rats inhaled to stainless steel welding dust and its soluble form. Int J Occup Med Environ Health. 2018 Oct;31(5):613–632. https://doi.org/10.13075/ijomeh.1896.01234.
  • Stärk HJ, Wennrich R. A new approach for calibration of laser ablation inductively coupled plasma mass spectrometry using thin layers of spiked agarose gels as references. Anal Bioanal Chem. 2011 Feb;399(6):2211–2217. https://doi.org/10.1007/s00216-010-4413-1.
  • Li Y, Guo W, Hu Z, Jin L, Hu S, Guo Q. Method Development for Direct Multielement Quantification by LA-ICP-MS in Food Samples. J Agric Food Chem. 2019 Jan;67(3):935–942. https://doi.org/10.1021/acs.jafc.8b05479.
  • De Laeter JR, Böhlke JK, De Bièvre P, Hidaka H, Peiser HS, Rosman KJR, Taylor PDP. Atomic weights of the elements. Review 2000 (IUPAC Technical Report), Pure Appl. Chem. 2003;75(6):683–800. https://doi.org/10.1351/pac200375060683.
  • Malinovsky D, Rodushkin I, Baxter DC, Ingri J, Öhlander B. Molybdenum isotope ratio measurements on geological samples by MC-ICPMS. Int J Mass Spectrom. 2005 Aug;245(1–3):94–107, https://doi.org/10.1016/j.ijms.2005.07.007.
  • Arnaudguilhem C, Larroque M, Sgarbura O, Michau D, Quenet F, Carrère S, Bouyssière B, Mounicou S. Toward a comprehensive study for multielemental quantitative LAICP MS bioimaging in soft tissues. Talanta. 2021 Jan;222:121537. https://doi.org/10.1016/j.talanta.2020.121537.
  • Limbeck A, Galler P, Bonta M, Bauer G, Nischkauer W, Vanhaecke F. Recent advances in quantitative LA-ICP-MS analysis: challenges and solutions in the life sciences and environmental chemistry. Anal Bioanal Chem. 2015 Sep;407(22):6593–617. https://doi.org/10.1007/s00216-0158858-0.
  • Hare DJ, Kysenius K, Paul B, Knauer B, Hutchinson RW, O’Connor C, Fryer F, Hennessey TP, Bush AI, Crouch PJ, Doble PA. Imaging Metals in Brain Tissue by Laser Ablation – Inductively Coupled Plasma – Mass Spectrometry (LA-ICP-MS). J Vis Exp. 2017 Jan;(119):55042. https://doi.org/10.3791/55042.
  • Miliszkiewicz N, Walas S, Tobiasz A. Current approaches to calibration of LA-ICP-MS analysis. J Anal At Spectrom. 2015; 30(2):327–338, https://doi.org/10.1039/C4JA00325J.
  • Lin J, Liu Y, Yang Y, Hu Z. Calibration and correction of LAICP-MS and LA-MC-ICP-MS analyses for element contents and isotopic ratios. Solid Earth Sci. 2016 Jun;1(1):5–27. https://doi.org/10.1016/j.sesci.2016.04.002.
  • Egger AE, Theiner S, Kornauth C, Heffeter P, Berger W, Keppler BK, Hartinger CG. Quantitative bioimaging by LA-ICPMS: a methodological study on the distribution of Pt and Ru in viscera originating from cisplatin- and KP1339-treated mice. Metallomics. 2014 Sep;6(9):1616–25. https://doi.org/10.1039/c4mt00072b.
  • Grijalba N, Legrand A, Holler V, Bouvier-Capely C. A novel calibration strategy based on internal standard-spiked gelatine for quantitative bio-imaging by LA-ICP-MS: application to renal localization and quantification of uranium. Anal Bioanal Chem. 2020 May;412(13):3113–3122. https://doi.org/10.1007/s00216-020-02561-4.
  • Papaslioti EM, Parviainen A, Román Alpiste MJ, Marchesi C, Garrido CJ. Quantification of potentially toxic elements in food material by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) via pressed pellets. Food Chem. 2019 Feb;274:726–732. https://doi.org/10.1016/j.foodchem.2018.08.118.
  • Van Heuzen AA, Morsink JBW. Analysis of solids by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS)-II. Matching with a pressed pellet. Spectrochim Acta Part B At Spectrosc. 1991;46(14):1819–1828, https://doi.org/10.1016/0584-8547(91)80208-K.
  • O’Connor C, Landon MR, Sharp BL. Absorption coefficient modified pressed powders for calibration of laser ablation inductively coupled plasma mass spectrometry. J Anal At Spectrom. 2007;22:273–282. https://doi.org/10.1039/B612512C.
  • Garbe-Schönberg D, Müller S. Nano-particulate pressed powder tablets for LA-ICP-MS. J Anal At Spectrom. 2014 Arp; 29 (6):990–1000. https://doi.org/10.1039/C4JA00007B.
  • Becker JS. Applications of inductively coupled plasma mass spectrometry and laser ablation inductively coupled plasma mass spectrometry in materials science. Spectrochim Acta B At Spectrosc. 2002 Dec;57(12):1805–1820. https://doi.org/10.1016/s0584-8547(02)00213-6.
  • Pickhardt C, Izmer AV, Zoriy MV, Schaumloffel D, Becker JS. On-line isotope dilution in laser ablation inductively coupled plasma mass spectrometry using a microflow nebulizer inserted in the laser ablation chamber ablation chamber. Int J Mass Spectrom. 2006 Feb;248(3):136–141. https://doi.org/10.1016/j.ijms.2005.11.001.
  • Dressler VL, Pozebon D, Mesko MF, Matusch A, Kumtabtim U, Wu B, Sabine Becker J. Biomonitoring of essential and toxic metals in single hair using on-line solution-based calibration in laser ablation inductively coupled plasma mass spectrometry. Talanta. 2010 Oct;82(5):1770–1777. https://doi.org/10.1016/j.talanta.2010.07.065.
  • Hare D, Austin C, Doble P. Quantification strategies for elemental imaging of biological samples using laser ablation-inductively coupled plasma-mass spectrometry. Anal. 2012 Feb;137(7):1527–1537. https://doi.org/10.1039/C2AN15792F.
  • Schweikert A, Theiner S, Šala M, Vician P, Berger W, Keppler BK, Koellensperger G. Quantification in bioimaging by LA-ICPMS – Evaluation of isotope dilution and standard addition enabled by micro-droplets. Anal Chim Acta. 2022 Aug 29;1223:340200. https://doi.org/10.1016/j.aca.2022.340200.
  • Bonta M, Hegedus B, Limbeck A. Application of dried droplets deposited on pre-cut filter paper disks for quantitative LA-ICP-MS imaging of biologically relevant minor and trace elements in tissue samples. Anal Chim Acta. 2016 Feb;908:54–62. https://doi.org/10.1016/j.aca.2015.12.048.
  • Hanć A, Piechalak A, Tomaszewska B, Barałkiewicz D. Laser ablation inductively coupled plasma mass spectrometry in quantitative analysis and imaging of plant’s thin sections. Int J Mass Spectrom. 2014;363:16–22. https://doi.org/10.1016/j.ijms.2014.01.020.
  • Feldmann J, Kindness A, Ek P. Laser ablation of soft tissue using a cryogenically cooled ablation. J Anal At Spectrom. 2002 Jul;17:813–818. https://doi.org/10.1039/B201960D.
  • Frick DA, Günther D. Fundamental studies on the ablation behaviour of carbon in LA-ICP-MS with respect to the suitability as internal standard. J Anal At Spectrom. 2012 Jul;27:1294–1303. https://doi.org/10.1039/C2JA30072A.
  • Douglas DN, O’Reilly J, O’Connor C, Sharp BL, GoenagaInfante H. Quantitation of the Fe spatial distribution in biological tissue by online double isotope dilution analysis with LA-ICP-MS: a strategy for estimating measurement uncertainty. J Anal At Spectrom. 2016;31:270. https://doi.org/10.1039/C5JA00351B. Moraleja I, Mena ML, Lázaro A, Neumann B, Tejedor A,
  • Jakubowski N, Gómez-Gómez MM, Esteban-Fernández D. An approach for quantification of platinum distribution in tissues by LA-ICPMS imaging using isotope dilution analysis. Talanta. 2018 Feb;178:166–171. https://doi.org/10.1016/j. talanta.2017.09.031.
  • Koch J, Günther D. Review of the state-of-the-art of laser ablation inductively coupled plasma mass spectrometry. Appl Spectrosc. 2011 May;65(5):155–162. https://doi.org/10.1366/11-06255.
  • Chan PC, Herbert RA, Roycroft JH, Haseman JK, Grumbein SL, Miller RA, Chou BJ. Lung tumor induction by inhalation exposure to molybdenum trioxide in rats and mice. Toxicol Sci. 1998 Sep;45(1):58–65. https://doi.org/10.1006/toxs.1998.2497.
  • Stowe HD, Braselton WE, Slanker M, Kaneene JB. Multielement assays of canine serum, liver, and kidney by inductively coupled argon plasma emission spectroscopy. Am J Vet Res. 1986 Apr;47(4):822–827.
  • Oymak T, Ulusoy Hİ, Hastaoglu E, Yılmaz V, Yıldırım Ş. Some Heavy Metal Contents of Various Slaughtered Cattle Tissues in Sivas-Turkey. JOTCSA 2017;4(3):721–728. https://doi.org/10.18596/jotcsa.292601.
  • Hasegawa-Baba Y, Kubota H, Takata A, Miyagawa M. Intratracheal instillation methods and the distribution of administered material in the lung of the rat. J Toxicol Pathol. 2014 Oct;27(3–4):197–204. https://doi.org/10.1293/tox.2014-0022.

Document Type

Publication order reference

Identifiers

Biblioteka Nauki
28761978

YADDA identifier

bwmeta1.element.ojs-doi-10_13075_ijomeh_1896_02305
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.