
Przemysław Ryś1, Robert Ślepaczuk2,3

Machine Learning Methods in Algorithmic
Trading Strategy Optimization – Design and
Time Efficiency

1 Quantitative Finance Research Group, Faculty of Economic Sciences, University of Warsaw and Labyrinth HF project; Corresponding author:
przrys@gmail.com.
2 Quantitative Finance Research Group, Faculty of Economic Sciences, University of Warsaw and Labyrinth HF project, ORCID ID:
0000-0001-5227-2014.
3 The views presented in this text are those of the authors and do not necessarily represent those of Circus Consulting Group nor LHF project.

Central European Economic Journal

 Open Access. © 2018 P. Ryś, R. Ślepaczuk, published by Sciendo. This work is licensed under
the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. https://doi.org/ 10.1515/ceej-2018-0021

207 CEEJ 5 • 2018 • 206−229 • ISSN 2543-6821 •https://doi.org/ 10.1515/ceej-2018-0021

Abstract: The main aim of this paper was to formulate and analyse the machine learning methods, fitted to the strat-
egy parameters optimization specificity. The most important problems are the sensitivity of a strategy performance
to little parameter changes and numerous local extrema distributed over the solution space in an irregular way.
The methods were designed for the purpose of significant shortening of the computation time, without a substan-
tial loss of strategy quality. The efficiency of methods was compared for three different pairs of assets in case of
moving averages crossover system. The problem was presented for three sets of two assets’ portfolios. In the first
case, a strategy was trading on the SPX and DAX index futures; in the second, on the AAPL and MSFT stocks; and
finally, in the third case, on the HGF and CBF commodities futures. The methods operated on the in-sample data,
containing 16 years of daily prices between 1998 and 2013 and was validated on the out-of-sample period between
2014 and 2017. The major hypothesis verified in this paper is that machine learning methods select strategies with
evaluation criterion near the highest one, but in significantly lower execution time than the brute force method
(Exhaustive Search).

Keywords: Algorithmic trading, investment strategy, machine learning, optimization, investment strategy, differ-
ential evolutionary method, cross-validation, overfitting.

JEL Codes: C61, G11, G17

P. Ryś, R. Ślepaczuk / Machine Learning Methods in Algorithmic Trading Strategy Optimization 208

1 Introduction

The last years witnessed a huge growth of the machine
learning popularity and its quick development.
The newly established algorithms were used to solve
many difficult problems from various fields of science
and to produce solutions facilitating many areas of life.
Therefore, the application of such methods to improve
the process of strategy adjustment seemed to be a natural
choice.

The main aim of this study was to formulate and
analyse the machine learning methods, fitted to the strat-
egy parameters’ optimization specificity. The most
important problems are the sensitivity of a strategy per-
formance to little parameter changes and numerous local
extrema distributed over the solution space in an irregu-
lar way. The methods were designed for the purpose of
significant shortening of the computation time, without
a substantial loss of a strategy quality. The efficiency of
methods was compared for three different pairs of assets
in case of moving averages crossover system. Consid-
ered algorithms – the Extended Hill Climbing, Grid
Method and Differential Evolution Method are based on
the well-known machine learning methods or intuitive
ideas based on observation of previous steps in order to
improve the next ones.

The machine learning methods, discussed in this
paper were designed to select the strategy parameters in
order to maximize strategy performance, measured by
the specified optimization criterion. The methods oper-
ated on the in-sample data, containing 16 years of daily
prices, and their results were verified on 4 years of out-
of-sample data. In the first case, a strategy was trading
on the SPX and DAX index futures, in the second on
the AAPL and MSFT stocks and finally, in the third case
on the HGF and CBF commodities futures.

The major hypothesis verified in this paper is that
results of the machine learning methods are the same
or only slightly worse than the ones near the highest
evaluation criterion, obtained by the Exhaustive Search
(brute force approach), but the time required for their
execution is significantly lower than computation time
of checking all the points from the solution space.
The additional research question is that the strategies
obtained by the machine learning methods are associ-
ated with a lower risk of overfitting than the strategies
resulted from the Exhaustive Search procedure.

The distributions of optimization criteria and
the computation time of 1000 executions of different
methods were compared and presented along with

the Exhaustive Search results. The adjustment quality
was assessed on in-sample data and additional out of
sample data in order to test the overfitting tendency.
Let us emphasise that the purpose of this paper is not
to design the most profitable strategy, but to compare
the efficiency of different machine learning methods and
the Exhaustive Search (brute force). Tests in the out-of-
sample period were performed to assess the overfitting
problem. The simulations for different sets of assets
was executed in the same framework implemented for
the purpose of this research.

The basic machine learning methods have serious
disadvantages. For instance, the well-known Hill Climb-
ing returns the local extremum, without guarantee of
reaching the global one. That algorithm is inadequate for
the global search problem, but it could be used as a main
component of more complex and efficient methods of
global optimization.

Since the machine learning methods proved their
value, by solving plenty of complicated problems, hence,
it was reasonable to expect the satisfying results of such
methods used for the strategy optimization. The initial
intuition was that the machine learning methods would
return the results a bit worse than the optimal one, but
in disproportionately shorter time, than checking all
the possibilities in order to get the best ones (the Exhaus-
tive Search).

Moreover, it was expected that the machine learn-
ing methods were less likely to overfit strategy than
the Exhaustive Search. The discussed methods were
based on an assumption that conditional expected
value of the optimization criterion is usually higher for
the points surrounded by those with high value of this
criterion. Therefore, the low regularity of the solution
space could be a real obstacle for the methods’ perfor-
mance. There was no reason to assume even a moder-
ate level of the space regularity, so the machine learning
methods probably could not find the optimal points, if
they were not in the high-valued neighbourhood. That
property could lead to reducing overfitting risk, because
usually, the parameter vector surrounded by those with
similar strategy performance have a bigger chance to
be profitable in the future, than those from a less stable
place.

The structure of this paper is composed as follows.
The second chapter contains the literature review. In
the third part, machine learning methods used in this
paper are explained, as well as the trading assumptions
and basic terms. The fourth chapter is devoted to data
description, when the fifth contains efficiency tests of

209 CEEJ 5 • 2018 • 206−229 • ISSN 2543-6821 •https://doi.org/ 10.1515/ceej-2018-0021

considered machine learning methods, with special
focus on the optimization criterion and computation
time distributions . The summary of results and conclu-
sions are included in the last part.

2 Literature review

The machine learning methods have been developed for
decades, even before that term was coined in the fifties
(Samuel, 1959). Nevertheless, the increased interest in
that field was observed in recent years due to the tech-
nical possibility to apply the artificial intelligence in
the various fields of science and life. The phenomenon
of learning from the computational viewpoint was dis-
cussed by Valiant (1984). The human’s natural ability
to learn and adapt was presented in terms of the infor-
mation’s selection and automatic adjustment process,
resulting in the algorithm’s modifications.

This approach is followed by plenty of the modern
machine learning methods and it is close to the general
ideas of the classic statistical modelling, where includ-
ing new dataset leads to changes in the model proper-
ties. The traditional statistical and econometric models
usually assume that data is produced by the stochastic
process from the specified class. The fitting procedure
is aimed at finding the process accurate to actual data
when the machine learning methods are often based
on the iterated improvements without specified model
form. The differences between these two approaches
called data models and algorithmic models respectively,
are widely discussed in Breiman (2001). The field of
machine learning contains plenty of various algorithms
and methods, used to solve a wide range of problems.
Some methods have strong mathematical foundations,
for instance, methods based on Markov Chain Monte
Carlo (Neal, 1993), when others, such as the Hill Climb-
ing or evolutionary methods, are based on heuristic
approach (Juels and Wattenbergy, 1994). The commonly
used methods and algorithms with application in scien-
tific problems are discussed by Hastie et al. (2013) and
Hastie et al. (2001).

The algorithmic strategies are widely used in
the financial markets, but most of them are not dis-
cussed in papers, due to exclusive character. Neverthe-
less, some types of the quantitative strategies are widely
known, and therefore, discussed in books and papers.
The strategy based on the technical analysis indicators,
such as the simple moving average crossover method

considered in this paper is analysed for specified cases
in Gunasekarage and Power (2001). Since machine learn-
ing methods have started to gain popularity, as a tool to
solve problems in various fields, numerous attempts to
use it for trading strategies occurred. Beyond the com-
mercial usage, many academic papers describing strate-
gies, with logic based on a machine learning have been
published. For example group of researchers at Sanković
et al. (2015), presented the strategy, based on the techni-
cal analysis and least squares support vector machines.
In contrast to this paper, they used machine learning
methods as a part of a system generating trading signals,
not as a part of system optimization process.

The more recent research was conducted by Ritter
(2017), who used Q-learning with the proper reward-
ing function to handle the risk-averse case and tested
strategy in the simulated trading. Dunis and Nathani
(2007) presented the quantitative strategies, based on
the neural networks such as the Multilayer Perceptron
(MLP), Higher Order Neural Networks (HONN) and on
the K-Nearest Neighbours method. The authors proved
that methods can be effectively used for generating
excess returns from trading on gold and silver. The com-
parison between the performance of machine learn-
ing methods and the linear models of ARMA type not
only lead to construct a better strategy but additionally
showed the presence of nonlinearities in the considered
time series.

The application of the machine learning methods
in order to predict future prices nowadays becomes
more and more popular. Shen, Jiang and Zhang (2012)
presented the forecasting model for stock market
indexes, based on Support Vector Machines, and tested
the trading system based on the produced predictions.
Similar approach was followed by Choundhry and
Kumkum (2008), where they introduced the hybrid
machine learning system, combining support vector
machines with genetic algorithm in order to predict
the stock prices. The machine learning methods were
used for predicting by Patel et al. (2015) in a more recent
research as well. The paper is focused on methods of
data pre-processing for purposes of further forecasting.
Therefore, many books and papers discuss the general
aspects and methods, such as walk-forward optimiza-
tion (Kirkpatrick and Dahlquist, 2011 or Pardo, 2011).

Differential evolution, which is one of the methods
considered in this paper, was designed by Storn and
Price (1997) and discussed in further papers, such as
Price et al. (2006). The algorithm was proposed for
solving complicated problems with irregular solution

P. Ryś, R. Ślepaczuk / Machine Learning Methods in Algorithmic Trading Strategy Optimization 210

space. It was used to solve non-convex portfolio optimi-
zation problems in Ardia et al. (2010) and the problem of
minimizing CVAR for the large-scale portfolio in Ardia
et al. (2011a). The method proved to be an efficient and
effective way to optimize complex problems.

3 Machine learning methods and
their benchmark

3.1 Basic terms and methodological issues

All the statistics used in the optimization criterion were
determined by the equity line and could be easily cal-
culated based on it. Therefore, the calculations of net
profits and losses (PnLs) were the most complex com-
ponent of the strategy evaluation procedure. The system
was based on the technology called Rcpp, allowing to
use efficient C++ programs inside R project. More pre-
cisely, the main function for calculating net PnL was
implemented in Rcpp framework in order to accelerate
computations based on loops. Other parts of system
were designed in R due to vectorization possibility and
high-performance of build in functions.

3.1.1 Statistics and risk metrics used in the paper

• Annualized rate of return – relative change of an
asset value, normalized according to time. The annu-
alized rate of return calculated for the asset of value
Vt in specified period (t1, t2) is defined by the follow-
ing formula:

𝐴𝐴𝐴𝐴𝐴𝐴(𝑉𝑉)𝑡𝑡1
𝑡𝑡2 = (

𝑉𝑉𝑡𝑡2
𝑉𝑉𝑡𝑡1

)
1

𝐷𝐷(𝑡𝑡1,𝑡𝑡2) − 1 (1)

where: D(t1, t2) stands for the time between t1 and t2
in years.

• Maximum drawdown – the maximum percentage
loss of value of the value process. For process Vt and
period [t1, t2], the maximum drawdown is defined
by the following formula:

𝑀𝑀𝑀𝑀𝑀𝑀(𝑉𝑉)𝑡𝑡1
𝑡𝑡2 = 𝑠𝑠𝑠𝑠𝑝𝑝(𝑥𝑥,𝑦𝑦)∈{[𝑡𝑡1,𝑡𝑡2]2 : 𝑥𝑥 ≤𝑦𝑦}

𝑉𝑉𝑥𝑥 − 𝑉𝑉𝑦𝑦
𝑉𝑉𝑥𝑥

 (2)

• Annualized standard deviation – the empiri-
cal standard deviation normalized, according to
the time. For specified time series Rt, the annualized
standard deviation in the period [t1, tn] is calculated
by using the formula:

𝐴𝐴𝐴𝐴𝐷𝐷(𝑉𝑉)𝑡𝑡1
𝑡𝑡𝑛𝑛 = √

1
𝑛𝑛∑ (

𝑡𝑡𝑛𝑛

𝑡𝑡=𝑡𝑡1
𝑅𝑅𝑡𝑡 − 𝑅𝑅)2 ∗ 1

𝐷𝐷(𝑡𝑡1, 𝑡𝑡𝑛𝑛)
 (3)

where: 𝑅𝑅 = 1𝑛𝑛∑ 𝑅𝑅𝑡𝑡
𝑡𝑡𝑛𝑛

𝑡𝑡=𝑡𝑡1

and D(t1, t2) is the time between t1 and t2 in years.

• Moving average - for the specified time series St and
the wages vector w = (w0, w1,...) the moving average
is a time series given by the formula:

𝑀𝑀𝑀𝑀(𝑆𝑆)𝑡𝑡𝑤𝑤 =∑ 𝑆𝑆𝑡𝑡−𝑖𝑖𝑤𝑤𝑖𝑖
𝑡𝑡

𝑖𝑖=0
 . (4)

3.1.2 Assumptions

The main problem was to find the best investment strat-
egy in the specified class of strategies, following the two
simple moving averages crossover approach. The behav-
iour of each strategy was fully determined by a vector of
parameters from four-dimensional space Ψ, each stand-
ing for different moving average window width. More
specifically, every strategy from Ψ was parametrized
by a vector p = (p1, p2, p3, p4) ∈Ψ, such that the trading
signals

𝑈𝑈𝑡𝑡
𝑖𝑖 for i∈ {1, 2} were given by the following formula:

𝑈𝑈𝑡𝑡𝑖𝑖 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑀𝑀𝐴𝐴1𝑖𝑖 (𝑆𝑆𝑖𝑖)𝑡𝑡−1 − 𝑀𝑀𝐴𝐴2
𝑖𝑖 (𝑆𝑆𝑖𝑖)𝑡𝑡−1) (5)

where: 𝑀𝑀𝐴𝐴𝑗𝑗𝑖𝑖(𝑆𝑆𝑖𝑖) denoted the simple moving average of
length p2i+j–2 for price series Si, which means that p1 and p2
stands for lengths of moving averages used for the first
asset, and analogously p3 and p4 refer to the second asset.
Additionally, we took convention that strategy com-
ponent is called momentum if the first moving average
length is smaller than the second, and analogously con-
trarian if the first moving average length is higher.

Optimization criterion was based on the typical
descriptive statistics used by traders – the annualized
returns (ARC), the annualized standard deviation (ASD)

211 CEEJ 5 • 2018 • 206−229 • ISSN 2543-6821 •https://doi.org/ 10.1515/ceej-2018-0021

and maximum drawdown (MDD). The criterion was
determined by the following formula:

𝑂𝑂𝑂𝑂 = 𝐴𝐴𝐴𝐴𝑂𝑂 ∗ |𝐴𝐴𝐴𝐴𝑂𝑂|
𝐴𝐴𝐴𝐴𝐴𝐴 ∗ 𝑀𝑀𝐴𝐴𝐴𝐴 (6)

The construction of the optimization criterion OC
reflected the preference of moderately profitable strate-
gies with low risk, over the high-profitable ones, associ-
ated with much higher risk. That approach was designed
to find more safe and stable strategies, in order to gen-
erate profits in the future. This criterion additionally
punished strategies with high MDD, which means that
the strategies with lower returns and constant increasing
trend are more likely to be selected than the more prof-
itable ones, associated with periods of significant losses.

Conditions on the financial markets were different
during the tested time period, from 1998 to 2017. For
the sake of simplicity, the constant transactional percent-
age costs were assumed. In the simulated trading, every
trade required bearing the fee equal to 0.25% of its value.
Additionally, we assumed leverage on the level of 40%,
which means that every considered strategy invested
20% of the total account balance on each asset (40% in
total). The rebalancing took place once each 5 trading
days.

The available strategies were fully determined
by four parameters, standing for moving averages
widths. Consequently, the strategy was optimized
on the parameters (solution) space Ψ composed of
vectors of four numbers from the set {1, 5, 10, ... , 100}
(i.e., Ψ = {1, 5, 10, ... , 100}4).

3.2 Specificity of the problem

The problem of selecting the best parameters of a trading
strategy could be parametrized and reformulated in
terms of optimization. The optimization criterion (OC)
is, as specified before, calculated based on annualized
returns and risk measures. The parameter space and
the reward function had some important properties, that
need to be included in the machine learning methods’
design in order to meet the problem specific require-
ments and reach better efficiency.

Solution space (Ψ) is discrete; thus, the application
of algorithms, based on the steps of decreasing size, was
strictly limited. Moreover, the function being optimized
had no simple analytical formula. In consequence,
there was no way to apply popular gradient-based

methods. The OC could be obtained from the statistics
of the equity line for the specified strategy parameters.
The calculations were not very complicated, but they
required relatively long time to be executed. The high
time complexity was caused by the calculation of profits
and losses for every trading day. Therefore, the main
difficulty was caused rather by the time expensive cri-
terion evaluations, than by the big number of possible
parameter combinations (194 481).

Additionally, the performance of automatic strat-
egies is usually sensitive to the parameters’ change;
therefore, even subtle difference could severely affect
the results. In consequence, one can expect multiple local
extrema scattered over the parameter space and big dif-
ferences in criterion value of the points near each other.
High sensitivity of the optimization criterion (objective
function) to the parameters was crucial for the machine
learning efficiency and led to the selection of more
complex methods, adjusted to the problem specificity.
Although the optimization criterion was unstable, some
level of regularity was necessary for machine learning
methods to work. Machine learning algorithms selected
the points (candidate solutions), surrounded by other
with the high criterion value, which could positively
affect results’ stability and reduce overfitting risk.

The machine learning methods presented in this
paper are based on well-known concepts. The main
effort was to design methods based on these algorithms,
but able to run on an atypical problem, hard to be solved
by the basic ones. Although the presented methods could
result in lower overfitting risk, the paper was focused on
the improvement of the strategy selection procedure in
terms of time, and hence no features aimed at reducing
the overfitting risk would be discussed.

3.3 Extended Hill Climbing (EHC)

The basic Hill Climbing is a local search method, based
on a very intuitive approach – going always in the way
that improves the situation. The method operates on
a graph, composed of nodes (points) with optimization
criterion value and edges, which determine the relation
of being neighbours. The basic Hill Climbing algorithm is
a simple loop, starting at the specified point and repeat-
edly changing current point to its neighbour with higher
optimization criterion value, as long as an improvement
was possible by making the step forward. The classic
Hill Climbing procedure checks all the neighbours and
selects the one with the highest value. The method trav-

P. Ryś, R. Ślepaczuk / Machine Learning Methods in Algorithmic Trading Strategy Optimization 212

erses the parameter space with only one rule of always
going up, using no information from the past, except
the current position. The accurate parallel for that algo-
rithm is ‘trying to find the top of Mount Everest in a thick
fog while suffering from amnesia’ (Russell and Nowig,
2003). The method can find only the local extremum,
thus it is local search. That is the significant limitation of
this method’s use, because there was no reason to expect
that method will end search in one of the best solutions.
Neighbours are often defined as points with the speci-
fied distance between them. In this case, the algorithm
traverses the parameter space using steps of the same
size. The Hill Climbing is well-adjusted for problems
with great regularity, such as convex ones, where
exactly one local maximum exists (Skiena, 2008). It is
no reason to assume that the considered problem has
that property, therefore, the main effort in this method
improvement was made by adjusting method to spaces
with many local maxima.

The Extended Hill Climbing (EHC) is composed of
the independent Hill Climbing executions, called walks.
These walks are starting at different random points
and the best result among them is returned at the end.
Every single walk procedure checks the neighbours
of the current point and goes ahead when the first
improvement is found. It is a substantially different
approach than followed by the classic one, reducing
computation time, because it does not require cal-
culating optimization criteria for all the neighbours.
Another new feature is the use of a few different neigh-
bours’ structures. More specifically, algorithm checks
the neighbours differing by exactly one parameter,
which implies that a walk is on the perpendicular multi-
dimensional grid, similar to the chess rook. At the very
beginning and after making every move, the algorithm
checks points with distance at specified, relatively high
levels. When no improvement is possible, the method
checks points with lower distance from the current one.
This procedure is repeated until no improvement is
possible; either the next move is made or the specified
minimum stepsize is exceeded. The stepsize series is
defined as

{𝐹𝐹, ⌈𝐹𝐹𝑘𝑘⌉ , ⌈
𝐹𝐹
𝑘𝑘2⌉ , . . . ,1} ,

where F is a starting step, in this paper, equal to 5 and k
is equal to 2. The initial preference of big steps resulted
in fast crossing the space and the possibility of walking
by small steps allowed the algorithm to finally search

the small neighbourhood in order to find solution with
optimization criterion as high as possible. This feature is
a crucial element of the method – algorithm uses steps of
various sizes; thus, a supervisor does not need to select
step size as cautiously as for method with fixed step size.
What is more, method always uses the step of minimal
size at the end; the neighbourhood of the best point is
precisely explored.

The number of walks required to get satisfying
results is stochastic. Thus, declaring the fixed number
could result in low stability of results – the difference
between optimization criteria obtained in the independ-
ent optimizations could be significant. The extended
method set the number of walks in a dynamic way,
dependent on the efficiency of previous walks. The algo-
rithm starts twice as many new walks, if the previous
set of walks improved the optimization criterion, which
suggests that there is still a possibility to improve results.
That solution guarantees the higher results’ stability, at
the expense of the time stability. The time required for
execution could be much higher, when the method starts
in a different starting point, but on the other hand, ‘bad’
starting points should not affect the final results. In this
paper, the initial number of walks is equal to 10.

Algorithm pseudocode.
Metaparameters: initialIterationsNumber, k, initial-

Step. Let us clarify, that unitVectori denotes the i-th unit
vector of space 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂:𝛹𝛹Ψ = {1,5, … ,100}4 → Rℝ d that is, vector of zeroes with 1 on i-th
coordinate – unitVectori = ei = (0,..., 0, 1, 0,..., 0). Result of
an operation x + c × ei is simply vector x with i-th coor-
dinate increased by c (decreased by -c for a negative c).

Listing 1. Algorithm pseudocode for Extended Hill
Climbing method.

 Set iterationsNumber = initialIterationsNumber / k.
 Set bestValue = -Inf.
 Set bestPoint = NULL.

 While TRUE {
 Set iterationsNumber = Round(iterationsNumber * k).
 Set bestValuePackage = -Inf.
 Set bestPointPackage = NULL.

 // Current walks set (package) of size equal to it-
erationsNumber.
 For j = 1 to iterationsNumber {
 Draw starting point x from uniform distribution over
 the parameters space.
 Set bestValueWalk = optimizedFunction(x).
 Set bestPointWalk = x.
 Set step = initialStep.

213 CEEJ 5 • 2018 • 206−229 • ISSN 2543-6821 •https://doi.org/ 10.1515/ceej-2018-0021

 // Single walk.
 While TRUE {
 Set previousBestValueWalk = bestValueWalk.

 // Checking neighbours.
 For every parameter space dimension i {
 Set neighbourUp = x + currentStep * unitVector_i.
 Set currentFunctionValue = optimizedFunction(neigh-
bourUp).

 If optimizedFunction(neighbourUp) > currentMaxValue
and
 neighbourUp is element of parameters space. {
 Set bestValueWalk = currentFunctionValue.
 Set bestPointWalk = neighbourUp.
 Break for loop.
 }

 Set neighbourDown = x + currentStep * unitVector_i.
 Set currentFunctionValue = optimizedFunction(neigh-
bourDown).

 If currentFunctionValue > currentMaxValue and
 neighbourDown is element of parameters space. {
 Set bestValueWalk = currentFunctionValue.
 Set bestPointWalk = neighbourUp.
 Break for loop.
 }
 }

 // Change stepsize if no better point found.
 If bestValueWalk == previousBestValueWalk
 Set step = RoundDown(step / k).

 If step == 0
 Stop walk by breaking current while loop.
 }

 // Update best value and point in package if needed.
 If bestValueWalk > bestValuePackage {
 Set bestValuePackage = bestValueWalk.
 Set bestPointPackage = bestPointWalk.
 }
 }

 // Stop algorithm if no improvement in the previous
package.
 If bestValuePackage > bestValue {
 Set bestValue = bestValuePackage.
 Set bestPoint = bestPointPackage
 } else {
 Break while loop and return bestPoint and bestValue.
 }
 }

3.4 Grid Method (GM)

The second machine learning method, called the Grid
Method (GM) is designed to operate on a limited space
of discrete parameters, called grids. The method is com-
posed of simple exhaustive searches, finding the best

points from the parameters subgrids. The subgrids
with a decreasing interspace are considered in the con-
secutive steps of the method. Firstly, the subgrids of
full range and the relatively high interspace between
parameters are considered and some of the best feasi-
ble solutions are used as a starting point for new inde-
pendent procedures. Every starting point becomes
the centre of a new subgrid, with a lower interspace
between parameters. After predefined number of itera-
tions, the interspace between parameters is minimal and
then the solution with the biggest criterion among all
subgrids is returned. This method is purely determin-
istic and need the initial subgrid of parameters’ space to
reflect the properties of whole space, such that the best
global solutions will be around the best solutions from
the initial subgrid. Otherwise, the method cannot return
satisfactory results. Therefore, the high-value solution,
surrounded by the worse ones might not be found by
this method.

The search could be improved by setting different
meta-parameters, such as the number of starting points
or the interspace between parameters in the initial
grid. There is a natural trade-off between the method’s
accuracy and the computation time due to the fact that
the computation time was approximately proportional
to the number of evaluations. Setting the meta-param-
eters allows to balance between method precision and
time in an easy and effective way. Another big advan-
tage is the deterministic nature of the method. There
is no uncertainty about the method’s results or com-
putation time, which could be observed for random
methods, such as the Extended Hill Climbing. Moreover,
the computation time could be estimated before execu-
tion due to the predefined number of evaluated points.
The method is easy to parallelize, as well as the previous
one – the procedures for separated grids could be exe-
cuted at the same time on different CPUs. The discussed
method is prepared for the purpose of this paper – it
is not an extension of the existing machine learning
methods; however, it follows the basic idea, so it could
be the method in use, following a similar approach.

Throughout the paper, the number of starting points
is always equal to 6 and the interspace between initial
subgrid parameters is equal to the initial step of the pre-
vious method – 5. The grid size is always 5x5x5x5,
centered at the best point from the previous search
procedure step. Interspace of a grid in the next step is
2 times shorter than that in the previous one (rounded
up if needed).

P. Ryś, R. Ślepaczuk / Machine Learning Methods in Algorithmic Trading Strategy Optimization 214

Algorithm pseudocode
Algorithm is provided for parameter space mapped

into {0,1, . . . , 𝑁𝑁}𝑘𝑘 for the sake of simplicity. Therefore,
parameterSpaceWidth denotes N and dim stands for
the parameter space dimension k. Metaparameters: num-
berOfSubgrids, gridSize, firstInterspace, initialInterspace,
minimumInterspace, k.

Listing 2. Algorithm pseudocode for Grid method.

Set bestValues = {-Inf, -Inf, ..., -Inf} as vector
of size numberOfGrids.
Set bestPoints = {NA, ..., NA} as list containing dim
vectors
of size numberOfSubgrids.

// Check points from the initial grid.

Set gridSize = parameterSpaceWidth / firstInterspace
+ 1.

For j1 = 0 to gridSize - 1 {
 For j2 = 0 to gridSize - 1 {
 ...
 For jdim = 0 to gridSize - 1 {
 // Check point from a current grid.
 Set currentPoint = firstInterspace *
 (j1 * unitVector_1 + j2 * unitVector_2 + ... +
 jdim * unitVector_dim).

 Set currentValue = optimizedFunction(currentPoint).

 If currentValue > bestValues[numberOfSubgrids] and
 currentPoint is element of parameters space {

 // Overwrite the lowest value from bestPoints and
sort.
 Set bestValues[numberOfSubgrids] = currentValue.
 Set bestPoints[numberOfSubgrids] = currentPoint.

 Sort descending bestValues.
 Permute bestPoints accordingly.
 }
 }
 ...
 }
}

// Check subgrids centered at the bestPoints.
Set interspace = initialInterspace.
While interspace >= minimumInterspace {
 For i = 1 to numberOfSubgrids {
 Set center = bestPoints[i].
 For j1 = -(gridSize - 1) / 2 to (gridSize - 1) / 2 {
 For j2 = -(gridSize - 1) / 2 to (gridSize - 1) / 2 {
 ...
 For jdim = -(gridSize - 1) / 2 to (gridSize - 1) /
2 {
 // Check point from a current grid.
 Set currentPoint = center + interspace *
 (j1 * unitVector_1 + j2 * unitVector_2 + ... +
 jdim * unitVector_dim).

 Set currentValue = optimizedFunction(currentPoint).

 If currentValue > bestValues[i] and
 currentPoint is element of parameters space {
 Set bestValues[i] = currentValue.
 Set bestPoints[i] = currentPoint.
 }
 }
 ...
 }
 }
 }

 Set interspace = RoundUp(interspace / k).
}

Return Max(bestValues) and corresponding point from
bestPoints.

3.5 Differential Evolution Method (DEM)

The Differential Evolution is the optimization method
inspired by the biological phenomenon of evolution.
The considered machine learning method follows
the approach of taking the random sample (population)
from the solution space (Ψ), disturbing the parameters
(mutation of the population characteristics) and creating
a new sample from the most profitable strategies (repro-
duction). The steps are repeated – the new population
is created, with the disturbed characteristics similar to
the best ones from the previous step. This approach
is similar to the rule of the Grid Method. Both methods
repeatedly check all the strategies from a specified
sample and create the next one, using the information
learned before.

The R implementation of the procedure JDEoptim
from DEoptimR package of version 1.0–8 with default
meta parameters (Conceicao, 2016) is used as a main
component of the method. The implemented version of
algorithm is consistent with jDE method from Brest et
al. (2006). The function DEoptim from package DEoptim
(Mullen et al., 2016) is implemented in Rcpp in a more effi-
cient way, and moreover, provides bigger elasticity than
the JDEoptim; therefore, we suggest to use it in practi-
cal applications. Nevertheless, in this paper, the method
JDEoptim was used, because it was fully implemented in
R like all other considered methods. Using faster func-
tion implemented in Rcpp would give this result unfair
advantage over the other ones and could significantly
affect the conclusions.

The differential evolution operates on the continu-
ous spaces of real numbers, therefore, it is inadequate for
the selection of integer parameters. However, the dis-

215 CEEJ 5 • 2018 • 206−229 • ISSN 2543-6821 •https://doi.org/ 10.1515/ceej-2018-0021

crete space can be intrapolated on the continuous one
by several methods. The optimization criterion function
OC: Ψ = {1, 5, ... , 100}4 → 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂:𝛹𝛹Ψ = {1,5, … ,100}4 → Rℝ was extended to OC̃ operat-
ing on the continuous real space [0, 100]4 in the follow-
ing way:

OC̃(𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3, 𝑥𝑥4) = 𝑂𝑂𝑂𝑂(5𝑚𝑚𝑚𝑚𝑚𝑚(⌊𝑚𝑚15 ⌋,1),5𝑚𝑚𝑚𝑚𝑚𝑚(⌊𝑚𝑚25 ⌋,1), . . . ,5𝑚𝑚𝑚𝑚𝑚𝑚(⌊𝑚𝑚45 ⌋),1)

 𝑂𝑂𝑂𝑂(5𝑚𝑚𝑚𝑚𝑚𝑚(⌊𝑚𝑚15 ⌋,1),5𝑚𝑚𝑚𝑚𝑚𝑚(⌊𝑚𝑚25 ⌋,1), . . . ,5𝑚𝑚𝑚𝑚𝑚𝑚(⌊𝑚𝑚45 ⌋),1)

The extended function OC̃ simply returns the value
of OC for the rounded values of parameters with addi-
tional assumption that parameters equal to 0 are changed
to 1.

3.6 The Exhaustive Search (ES)

The strategies selected by different methods were
analysed and compared with the optimal strategy,
maximizing the optimization criterion in the in-sam-
ple period. The optimal strategy was found in every
case by the Exhaustive Search (brute-force) algorithm
checking all possible combinations of parameters in
order to select one with the highest criterion value. Fol-
lowing this approach always leads to get the highest
possible criterion value, but it requires plenty of time.
The main purpose of using machine learning methods
instead of the Exhaustive Search was to get significantly
lower computation time without the loss of quality of
results. Therefore, the difference in computation time
reflects the value of information learned in previous
steps for further search procedure efficiency. Moreover,
the Exhaustive Search will be treated as a benchmark
due to its simplicity, intuitive character and widespread
use.

4 Data description

The main goal of machine learning methods was to find
the parameters’ vector ψ∈Ψ = {1, 5, ... , 100}4 (i.e. vector
of four parameters, each from the set {1, 5, ... , 100}) in
order to select the self-financing strategy maximizing
OC within the framework of the assumptions.

Every considered portfolio was composed of two
securities of the same kind. The first pair contained
the futures contracts on two important and highly cor-

related market indexes – American S&P500 Index (SPX)
and German Deutscher Aktienindex (DAX). The next con-
sidered pair was composed of two big American high-
tech companies stocks – Apple Inc. (AAPL) and Microsoft
Corp. (MSFT). These companies are major representa-
tives of the IT sector and American economy, but there
was a real difference, between their dynamics of growth.
The last considered assets were two commodities’
futures contracts – High-Grade Copper Futures (HG.F) and
Crude Oil Brent Futures (CB.F).

The machine learning methods searched for strat-
egy optimal in the in-sample period from the beginning
of 1998 to the end of 2013. Strategies were validated on
the out-of-sample data from the beginning of 2014 to
the end of 2017. All strategies operated on daily data,
taking position each trading day. The length of in-sam-
ple period was big enough to make sure that the dif-
ferent market trends were included for all-time series.
On the other hand, the out-of-sample length allowed to
properly validate strategies and assess overfitting level.

The most rapid growth of value was observed for
AAPL stock, whose price increased on average by around
35% annually. The disproportion between the profita-
bility of AAPL and other assets did not diminish, after
adjusting for risk and applying terms of IR measure.
The standard deviation of AAPL returns was higher
than for any other asset, however, in a way dispropor-
tionately lower than the returns. Therefore, one can say
that risk was fully compensated by enormously high
returns. Additionally, AAPL had the lowest maximum
drawdown (43.80%) among all the considered price
series (around 60–70%).

The returns of AAPL was still high, but noticea-
bly lower in the out-of-sample period, although the IR
measure was higher than in the in-sample period.
The returns of AAPL was lower than in the earlier
period but associated with much lower risk. Microsoft
share price increased faster than the other asset prices
in the out-of-sample period. The IR was higher than for
any time series in the out-of-sample. It is worth noting,
that the commodities’ (HG.F and CB.F) return was nega-
tive in the out-of-sample period. The graphs of the prices
normalized by the initial value would be presented
together with strategies’ equity lines in the further part
of this paper.

P. Ryś, R. Ślepaczuk / Machine Learning Methods in Algorithmic Trading Strategy Optimization 216

5 Efficiency tests for different
methods

Methods described before were tested on the three pairs
of assets by running whole optimization process on
the data from in-sample period. Extended Hill Climb-
ing and Differential Evolution Method were executed
1000 times for every pair due to their random nature.
The strategies with median optimization criterion were
treated as final results for comparison purposes and
were called median strategies. Lengths of moving aver-
ages for first asset are denoted by k1 and k2 and analo-
gously k1.2, k2.2 for the second one.

5.1 S&P500 Index (SPX) and Deutscher
Aktienindex (DAX)

All statistics and graphs referring to the methods’
performance on that pair of assets were denoted by
the acronym SPXDAX.

5.2 In-sample methods efficiency

All machine learning methods had the same selected
median strategy, different than the one resulted
from Exhaustive Search procedure. Nevertheless,
all the methods used contrarian approach on SPX
and momentum component operating on DAX. Both
the optimal strategies resulted from ES and median
strategy of machine learning methods generated only

Tab. 1: The descriptive statistics of the considered assets

In-sample Out-of-sample

SPX DAX AAPL MSFT HGF CBF SPX DAX AAPL MSFT HGF CBF

%ARC 3.92 4.79 35.22 6.32 9.41 12.14 9.67 8.07 22.68 25.70 -0.62 -11.01

%ASD 20.39 24.97 46.69 33.06 28.48 34.54 11.94 18.37 22.27 21.43 19.25 33.07

IR 0.19 0.19 0.75 0.19 0.33 0.35 0.81 0.44 1.02 1.2 -0.03 -0.33

%MDD 56.78 72.68 43.80 71.65 68.37 73.48 14.16 29.27 30.45 18.05 42.47 75.83

%ARC - annualized rate of return (%), %ASD - annualized standard deviation (%), %MDD - maximum drawdown of capital (%), IR -
information ratio calculated as %ARC / %ASD, OC - optimization criterion calculated as 100 * (%ARC * %ARC) / (%ASD * %MDD),
SPX - S&P500 Index, DAX - Deutscher Aktienindex, AAPL - Apple Inc. stock, MSFT - Microsoft Corp. stock, HGF - High Grade Copper
Futures, CBF - Crude Oil Brent Futures. The statistics have been calculated for in-sample period from the beginning of 1998 to the end of
2013 and for out-of-sample period from the beginning of 2013 to the end of 2017, on daily data.

Tab. 2: The median strategies parameters and statistics resulted
from all the methods for SPXDAX

In-sample Out-of-sample

ES EHC GM DEM ES EHC GM DEM

k1 60.00 100.00 100.00 100.00 60.00 100.00 100.00 100.00

k2 45.00 35.00 35.00 35.00 45.00 35.00 35.00 35.00

k1.2 65.00 45.00 45.00 45.00 65.00 45.00 45.00 45.00

k2.2 75.00 85.00 85.00 85.00 75.00 85.00 85.00 85.00

%ARC 4.27 3.92 3.92 3.92 -0.03 -0.62 -0.62 -0.62

%ASD 5.17 4.63 4.63 4.63 4.02 3.74 3.74 3.74

IR 0.83 0.85 0.85 0.85 -0.01 -0.17 -0.17 -0.17

%MDD 4.53 4.30 4.30 4.30 7.20 6.34 6.34 6.34

OC 77.79 77.16 77.16 77.16 0.00 -1.62 -1.62 -1.62

%ARC - annualized rate of return (%), %ASD - annualized
standard deviation (%), %MDD - maximum drawdown of
capital (%), IR - information ratio calculated as %ARC / %ASD,
OC - optimization criterion calculated as 100 * (%ARC * %ARC) /
(%ASD * %MDD), k1, k2, k1.2, k2.2 - strategy parameters, width
of the moving averages’ windows. The statistics of the equity lines
have been calculated for the strategy working on daily frequency,
investing 20% of capital in position on each asset with rebalancing
every 5 trading days. Trading from the beginning of 1998 to
the end of 2013 has been simulated, with the assumption of fee
equal to 0.25% of the position value.

217 CEEJ 5 • 2018 • 206−229 • ISSN 2543-6821 •https://doi.org/ 10.1515/ceej-2018-0021

moderate profits during the whole in-sample period. On
the other hand, the strategy met the requirements of sta-
bility and safety. Strategies of that kind were preferred
over the more profitable ones due to using low leverage
and including two risk measures in the construction of
the optimization criterion. The maximum drawdown
was especially low, despite the relatively long time
horizon. The resulting strategies never lost more than
5% of the available money during whole 16 years of
the in-sample period, comparing with more than 50%
on the basis instruments (SPX and DAX indexes).

The strategy components could hedge each other
in order to reduce the portfolio risk and obtain more

smooth equity line (stable profits). Both strategies fol-
lowed two opposite approaches in trading on two similar
assets. The strategy contained the contrarian part, oper-
ating on SPX and the momentum one trading on DAX.
The Exhaustive Search reached the global maxima, but
the total calculation time was equal to 609.37 minutes.

The empirical distributions of the reached criterion
and computation time of 1000 independent EHC and
respectively DEM executions are presented on Fig. 2
and Fig. 3. Most of the independent procedures for both
methods returned the same strategy with the second
best optimization criterion. No selected solution had sig-
nificantly worse performance and considerable number

500

1000

1500

2000

1999 2001 2003 2005 2007 2009 2011 2013
Date

eq
ui

ty
 li

ne
, n

or
m

al
iz

ed
 p

ric
e

DAX

EHC, GM, DEM

ES

SPX

Fig. 1: The equity lines of the strategies selected by all the methods for SPXDAX - in-sample
SPX - S&P500 Index, DAX - Deutscher Aktienindex, ES, EHC, GD, DEM - equity line of the median strategy resulted from respec-
tively Exhaustive Search, Extended Hill Climbing, Grid Method and Differential Evolution Method. Prices of both assets have
been normalized in order to have initial value equal to 1000. The equity line has been calculated for the strategy working on daily
frequency, investing 20% of capital in position on each asset with rebalancing every 5 trading days. Trading from the beginning of
1998 to the end of 2013 has been simulated, with the assumption of fee equal to 0.25% of the position value.

0

200

400

65 70 75
Optimization Criterion OC

co
un

t

0

100

200

300

0 200 400 600
Computation time [sec]

co
un

t

Fig. 2: The histograms of the reached optimization criterion and the execution time of EHC for SPXDAX – in-sample
OC - optimization criterion calculated as 100 * (%ARC * %ARC) / (%ASD * %MDD). The optimization criterion have been calcu-
lated from the sample of 1000 independent algorithm executions. The strategies have been working on the daily frequency, invest-
ing 20% of capital in position on each asset with rebalancing every 5 trading days. Trading from the beginning of 1998 to the end of
2013 has been simulated, with assumption of fee equal to 0.25% of the position value.

P. Ryś, R. Ślepaczuk / Machine Learning Methods in Algorithmic Trading Strategy Optimization 218

of them reached the highest criterion as well. Therefore,
the results proved both high efficiency and stability
of the methods (Tab. 3). The median of the Extended
Hill Climbing procedure computation time is equal to
30.97 seconds, when the Exhaustive Search took more
than 10 hours. The computation time improvement is
indisputable. Due to the dynamic stopping rule, the exe-
cution time was highly varied across the sample. Some
runs lasted around 11 seconds, when the others took
around 9 minutes. Nevertheless, the observed low
level of stability did not affect the time advantage over
the Exhaustive Search, because all the procedures lasted
incomparably less.

The Grid Method resulted in the second best strategy,
exactly the same as median strategy from the Extended
Hill Climbing. The calculation time was longer than for
the previous method. On the other hand, the execution
lasted 128.04 seconds, which was still much less than for
the Exhaustive Search. The method had some advantages
over the previous, machine learning method as well.
The optimization criterion was similar, but there was no
uncertainty either about results or time, while the EHC
and DEM results was random.

Most of the DEM executions selected exactly
the same strategy, as two previous methods. The median

execution time for DEM equalled to 31.15 seconds and
the time required to execute the procedure had lower
standard deviation than for EHC. The Differential Evolu-
tion Method gave strategies similar to the optimal ones
but in relatively short and stable time.

5.2.1 Out-of-sample results

As expected, the out-of-sample strategy performance
was worse than the in-sample period. The strategies
obtained by the Exhaustive Search and all the con-
sidered machine learning methods were ineffective in
the out-of-sample period and resulted in return close to
zero at the end of a time horizon.

Tab. 3: The summary of the reached optimization criterion and
the execution time of methods for SPXDAX – in-sample

ES EHC GM DEM

OC Time
[sec] OC Time

[sec] OC Time
[sec] OC Time

[sec]

Minimum 77.79 35562.17 65.58 11.87 77.16 128.04 71.93 13.11

1st
Quantile 77.79 35562.17 74.39 13.93 77.16 128.04 77.16 24.84

Median 77.79 35562.17 77.16 30.97 77.16 128.04 77.16 31.15

Mean 77.79 35562.17 75.94 43.1 77.16 128.04 77.34 42.73

2nd
Quantile 77.79 35562.17 77.16 65.32 77.16 128.04 77.79 61.5

Max 77.79 35562.17 77.79 569.39 77.16 128.04 77.79 141.08

Standard
deviation

0.00 0.00 2.61 48.77 0.00 0.00 0.36 24.06

OC - optimization criterion calculated as 100 * (%ARC * %ARC) /
(%ASD * %MDD). The equity lines have been calculated for
the strategy working on daily frequency, investing 20% of
capital in position on each asset with rebalancing every 5 trading
days. Trading from the beginning of 1998 to the end of 2013 has
been simulated, with the assumption of fee equal to 0.25% of
the position value.

0

200

400

600

72 74 76 78
Optimization Criterion OC

co
un

t

0

50

100

150

50 100 150
Computation time [sec]

co
un

t

0

200

400

600

72 74 76 78
Optimization Criterion OC

co
un

t

0

50

100

150

50 100 150
Computation time [sec]

co
un

t

Fig. 3: The histograms of the reached optimization criterion and
the execution time of DEM for SPXDAX - in-sample

OC - optimization criterion calculated as 100 * (%ARC *
%ARC) / (%ASD * %MDD). The optimization criterion have
been calculated for the strategy working on daily frequency,
investing 20% of the capital in position on each asset with rebal-
ancing every 5 trading days. Trading from the beginning of 1998
to the end of 2013 has been simulated, with the assumption of
fee equal to 0.25% of the position value.

219 CEEJ 5 • 2018 • 206−229 • ISSN 2543-6821 •https://doi.org/ 10.1515/ceej-2018-0021

5.3 Apple Inc. (AAPL) and Microsoft
Corp. stock (MSFT)

The strategy was optimized for the stocks of high-tech
companies Apple Inc. and Microsoft Corp. The dynamic
growth of prices was a great trading opportunity, there-
fore the strategies were able to generate high profit in
both periods. Similar to the previous pair, the high corre-
lation between prices was observed both in the in-sam-
ple and in the out-of-sample periods, what gave the pos-
sibility to design strategies with hedging elements and
obtain results associated with a lower risk. All the statis-
tics and graphs referring to that case were denoted by
AAPL MSFT.

5.3.1 In-sample methods efficiency

All the considered methods selected exactly the same
strategy. Simple moving averages crossover approach
was highly effective due to the enormously high growth
of the Apple stock. That strategy had a large return in
the in-sample period, 17.79% annually, and low risk
measures as well. The annualized standard deviation
of returns was equal to 11.13% when the maximum
drawdown was lower than 8%. The return generated
by the strategy was high but incomparably lower than
the percentage growth of AAPL. Nevertheless, buy-and-
hold strategy following the specified rebalancing rule
with leverage at level 40% generated a return of 13.59%
with annualized standard deviation equal to 9.24%

900

1000

1100

1200

1300

1400

2014 2015 2016 2017 2018
Date

eq
ui

ty
 li

ne
s,

 n
or

m
al

iz
ed

 p
ric

e

DAX
EHC, GM,
DEM
ES

SPX

Fig. 4: The equity lines of the strategies selected by the all the methods for SPXDAX – out-of-sample
ES, EHC, GD, DEM - equity line of the median strategy resulted from respectively Exhaustive Search, Extended Hill Climbing, Grid
Method and Differential Evolution Method. Prices of both assets have been normalized in order to have initial value equal to 1000.
The equity line has been calculated for the strategy working on daily frequency, investing 20% of capital in position on each asset
with rebalancing every 5 trading days. Trading from the beginning of 2014 to the end of 2017 has been simulated, with the assump-
tion of fee equal to 0.25% of the position value.

Tab. 4: The median strategy parameters and statistics resulted
from all the methods for AAPLMSFT

In-sample Out-of-sample

ES EHC GM DEM ES EHC GM DEM

k1 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00

k2 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00

k1.2 75.00 75.00 75.00 75.00 75.00 75.00 75.00 75.00

k2.2 40.00 40.00 40.00 40.00 40.00 40.00 40.00 40.00

%ARC 17.79 17.79 17.79 17.79 1.37 1.37 1.37 1.37

%ASD 11.13 11.13 11.13 11.13 5.68 5.68 5.68 5.68

IR 1.60 1.60 1.60 1.60 0.24 0.24 0.24 0.24

%MDD 7.71 7.71 7.71 7.71 9.54 9.54 9.54 9.54

OC 368.83 368.83 368.83 368.83 3.49 3.49 3.49 3.49

%ARC - annualized rate of return (%), %ASD - annualized
standard deviation (%), %MDD - maximum drawdown of capital
(%), IR - information ratio calculated as %ARC / %ASD, OC -
optimization criterion calculated as 100 * (%ARC * %ARC) /
(%ASD * %MDD), k1, k2, k1.2, k2.2 - strategy parameters, width
of the moving averages’ windows. The statistics of the equity line
have been calculated for the strategy working on daily frequency,
investing 20% of capital in position on each asset with rebalancing
every 5 trading days. Trading from the beginning of 1998 to
the end of 2013 has been simulated, with the assumption of fee
equal to 0.25% of the position value.

P. Ryś, R. Ślepaczuk / Machine Learning Methods in Algorithmic Trading Strategy Optimization 220

and the maximum drawdown of 9.71%. Therefore,
the selected strategy is both highly profitable and asso-
ciated with relatively low risk as well. The Exhaustive
Search lasted 547.02 minutes in that case.

The Extended Hill Climbing method returned exactly
the same results as the Exhaustive Search, but in sig-
nificantly lower time. There were a number of similar-
ities between the method performance in the current
and the previous case. The Extended Hill Climbing
had the high stability of results, but uncertain compu-
tation time. Despite the low time stability, the method
proved to be far more efficient than the Exhaustive
Search. The median of execution time was equal to
18.18 seconds (Tab. 5).

The Grid Method resulted in exactly the same strategy
as both previous methods. The computation time was
equal to 150.66 seconds.

The Differential Evolution reached the global maxima
in almost every attempt. Moreover, the median of the exe-
cution time was higher (22.19) than for the Extended Hill
Climbing, but the execution time had a lower standard
deviation. Therefore, the differential evolution proved
to be an efficient and a stable method in that case.
The median strategy was the optimal one, the same as
for all other considered methods.

0

50000

100000

150000

1999 2001 2003 2005 2007 2009 2011 2013
Date

eq
ui

ty
 li

ne
s,

 n
or

m
al

iz
ed

 p
ric

e

AAPL
ES, EHC,
GM, DEM
MSFT

Fig. 5: The equity line of the strategy selected by all the methods for AAPLMSFT – in-sample
AAPL - Apple Inc. stock, MSFT - Microsoft Corp. stock, ES, EHC, GD, DEM - equity line of the median strategy resulted from
respectively Exhaustive Search, Extended Hill Climbing, Grid Method and Differential Evolution Method. Prices of both assets
have been normalized in order to have initial value equal to 1000. The equity line has been calculated for the strategy working on
daily frequency, investing 20% of capital in position on each asset with rebalancing every 5 trading days. Trading from the begin-
ning of 1998 to the end of 2013 has been simulated, with the assumption of fee equal to 0.25% of the position value.

0

250

500

750

300 320 340 360
Optimization Criterion OC

co
un

t

0

100

200

300

0 50 100 150
Computation time [sec]

co
un

t

Fig. 6: The histograms of the reached optimization criterion and the execution time of EHC for AAPLMSFT – in-sample
OC - optimization criterion calculated as 100 * (%ARC * %ARC) / (%ASD * %MDD). The optimization criterion has been calculated
from the sample of 1000 independent algorithm executions. The strategies have been working on the daily frequency, investing 20%
of capital in position on each asset with rebalancing every 5 trading days. Trading from the beginning of 1998 to the end of 2013 has
been simulated, with the assumption of fee equal to 0.25% of the position value.

221 CEEJ 5 • 2018 • 206−229 • ISSN 2543-6821 •https://doi.org/ 10.1515/ceej-2018-0021

5.3.2 The out-of-sample results

All the considered machine learning methods selected
the same strategy as the exhaustive search procedure.
That strategy was optimal on the in-sample period in
terms of optimization criterion, resulted in annualized
returns at the level of 17.79% and relatively low both
annualized standard deviation (%ASD) and maximum
drawdown (%MDD). Performance of the selected strat-
egy on the out-of-sample period was substantially worse
than on the in-sample period. Strategy had more than
10 times lower %ARC, similar %MDD and a little lower
%ASD (Tab. 4). A big difference between performance

on the consecutive periods suggested high level of strat-
egy overfitting, however, strategy generated positive
profits in the out-of-sample period.

5.4 High Grade Copper Futures (HG.F)
and Crude Oil Brent Futures (CB.F)

The last considered pair of assets was composed of
the two commodities’ futures contracts. The problem
of finding the optimal strategy was harder, than for
the previous ones. The difference between commodi-
ties’ behaviour in both periods and a weaker statistical

0

250

500

750

1000

275 300 325 350 375
Optimization Criterion OC

co
un

t

0

40

80

120

10 20 30 40
Computation time [sec]

co
un

t

Fig. 7: The histograms of the reached optimization criterion and the execution time of DEM for AAPLMSFT – in-sample
OC - optimization criterion calculated as 100 * (%ARC * %ARC) / (%ASD * %MDD). The optimization criterion have been calcu-
lated from the sample of 1000 independent algorithm executions. The strategies have been working on the daily frequency, invest-
ing 20% of capital in position on each asset with rebalancing every 5 trading days. Trading from the beginning of 1998 to the end of
2013 has been simulated, with the assumption of fee equal to 0.25% of the position value.

Tab. 5: The summary of the reached optimization criterion and the execution time of methods for AAPLMSFT – in-sample

ES EHC GM DEM

OC Time [sec] OC Time [sec] OC Time [sec] OC Time [sec]

Minimum 368.83 32821.18 301.34 11.96 368.83 150.66 274.97 11.82

1st Quantile 368.83 32821.18 368.83 14 368.83 150.66 368.83 19.67

Median 368.83 32821.18 368.83 18.18 368.83 150.66 368.83 22.19

Mean 368.83 32821.18 367.16 27.4 368.83 150.66 368.55 22.71

2nd Quantile 368.83 32821.18 368.83 32.97 368.83 150.66 368.83 25.27

Max 368.83 32821.18 368.83 174.06 368.83 150.66 368.83 45.8

Standard deviation 0.00 0.00 5.51 18.71 0.00 0.00 5.14 4.52

OC - optimization criterion calculated as 100 * (%ARC * %ARC) / (%ASD * %MDD). The optimization criterion has been calculated
from the sample of 1000 independent algorithm executions. The strategies have been working on the daily frequency, investing 20% of
capital in position on each asset with rebalancing every 5 trading days. Trading from the beginning of 1998 to the end of 2013 has been
simulated, with the assumption of fee equal to 0.25% of the position value.

P. Ryś, R. Ślepaczuk / Machine Learning Methods in Algorithmic Trading Strategy Optimization 222

relationship between them were the main reasons for
the difficulties. The statistics and graphs from that case
were always denoted by HGFCBF.

5.4.1 In-sample methods efficiency

The Exhaustive Search selected the strategy with an
annualized return equal to 8.18%, when all the machine
learning methods selected median strategy with returns
at level of 9.53%. Nevertheless, that strategy was
optimal in terms of optimization criterion, depending on

1000

1500

2000

2500

2014 2015 2016 2017 2018
Date

eq
ui

ty
 li

ne
, n

or
m

al
iz

ed
 p

ric
e

AAPL
ES, EHC,
GM, DEM
MSFT

Fig. 8: The equity lines of the strategies selected by all the methods for AAPLMSFT – out-of-sample
AAPL - Apple Inc. stock, MSFT - Microsoft Corp. stock, ES, EHC, GD, DEM - equity line of the median strategy resulted from
respectively Exhaustive Search, Extended Hill Climbing, Grid Method and Differential Evolution Method. Prices of both assets
have been normalized in order to have initial value equal to 1000. The equity line has been calculated for the strategy working on
daily frequency, investing 20% of capital in position on each asset with rebalancing every 5 trading days. Trading from the begin-
ning of 2014 to the end of 2017 has been simulated, with the assumption of fee equal to 0.25% of the position value.

Tab. 6: The median strategies parameters and statistics resulted from all the methods for HGFCBF

In-sample Out-of-sample

ES EHC GM DEM ES EHC GM DEM

k1 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00

k2 75.00 75.00 75.00 75.00 75.00 75.00 75.00 75.00

k1.2 50.00 30.00 30.00 30.00 50.00 30.00 30.00 30.00

k2.2 25.00 95.00 95.00 95.00 25.00 95.00 95.00 95.00

%ARC 8.18 9.53 9.53 9.53 -1.59 6.60 6.60 7.38

%ASD 8.16 9.83 9.83 9.83 7.09 8.17 8.17 8.07

IR 1.00 0.97 0.97 0.97 -0.22 0.81 0.81 0.91

%MDD 7.51 9.52 9.52 9.52 15.86 12.16 12.16 12.16

OC 109.11 97.04 97.04 97.04 -2.24 43.81 43.81 55.49

OC - optimization criterion calculated as 100 * (%ARC * %ARC) / (%ASD * %MDD). The empirical statistics have been calculated
from the sample of 1000 independent algorithm executions. The strategies have been working on the daily frequency, investing 20% of
capital in position on each asset with rebalancing every 5 trading days. Trading from the beginning of 1998 to the end of 2013 has been
simulated, with the assumption of fee equal to 0.25% of the position value.

223 CEEJ 5 • 2018 • 206−229 • ISSN 2543-6821 •https://doi.org/ 10.1515/ceej-2018-0021

the returns and risk measures as well. The Exhaustive
Search process took 703.226 minutes.

The conclusions from computing 1000 procedures of
EHC were the same as for the previous cases (Tab. 7).
The reached optimization criterion was rather stable, in
contrast to an unstable computation time. Once again,
all the learning procedures took a far less time than
the Exhaustive Search (median of execution time was
equalled 33.07 seconds).

FThe GM method returned the median strategy of
EHC and its computation time lasted 113.752 seconds.
The conclusions were consistent with those discussed in

the previous cases. The method obtained good results in
the fixed time, when the Extended Hill Climbing optimi-
zation gave similar results in shorter, but more random
time. The Grid Method resulted in a strategy near to
optimal with a reasonable time of execution.

The median of DEM criteria was the same as for
the Extended Hill Climbing. The computation time of
the Differential Evolution had the higher stability than
EHC and the lowest median value among all methods
(23.08 seconds).

2500

5000

7500

1999 2001 2003 2005 2007 2009 2011 2013
Date

eq
ui

ty
 li

ne
s,

 n
or

m
al

iz
ed

 p
ric

e

CBF
EHC, GM,
DEM
ES

HGF

Fig. 9: The equity lines of the strategy selected by all the methods for HGFCBF – in-sample
HGF - High Grade Copper Futures, CBF - Crude Oil Brent Futures, ES, EHC, GD, DEM - equity line of the median strategy resulted
from respectively Exhaustive Search, Extended Hill Climbing, Grid Method and Differential Evolution Method. Prices of the both
assets have been normalized in order to have initial value equal to 1000. The equity line has been calculated for the strategy
working on daily frequency, investing 20% of capital in position on each asset with rebalancing every 5 trading days. Trading from
the beginning of 1998 to the end of 2013 has been simulated, with the assumption of fee equal to 0.25% of the position value.

0

100

200

300

400

80 90 100 110
Optimization Criterion OC

co
un

t

0

100

200

300

400

0 200 400 600
Computation time [sec]

co
un

t

Fig. 10: The histograms of the reached optimization criterion and the execution time of EHC for HGFCBF – in-sample
OC - optimization criterion calculated as 100 * (%ARC * %ARC) / (%ASD * %MDD). The optimization criterion has been calculated
from the sample of 1000 independent algorithm executions. The strategies have been working on the daily frequency, investing 20%
of capital in position on each asset with rebalancing every 5 trading days. Trading from the beginning of 1998 to the end of 2013 has
been simulated, with the assumption of fee equal to 0.25% of the position value.

P. Ryś, R. Ślepaczuk / Machine Learning Methods in Algorithmic Trading Strategy Optimization 224

5.4.2 The out-of-sample results

All the considered machine learning methods finally
selected the same strategy, which was slightly worse
than the optimal one in the in-sample period but signif-
icantly better in the out-of-sample period. The annual-
ized returns were about 6.60% with reasonable standard

deviation and maximum drawdown. It is worth noticing
that the strategy with the highest optimization criterion
was omitted by all machine learning methods, proba-
bly because of the low stability of criterion around that
point. The parameters’ vector was probably surrounded
by the low-value ones, and therefore, machine learning
methods could not find it. In consequence, the method

Tab. 7: The summary of the reached optimization criterion and the execution time of the methods for HGFCBF – in-sample

ES EHC GM DEM

OC Time [sec] OC Time [sec] OC Time [sec] OC Time [sec]

Minimum 109.11 42193.57 77.29 12.29 97.04 113.75 97.04 9,76

1st Quantile 109.11 42193.57 93.62 14.73 97.04 113.75 97.04 19.92

Median 109.11 42193.57 97.04 33.09 97.04 113.75 97.04 23.08

Mean 109.11 42193.57 97.82 42.69 97.04 113.75 99.01 27.34

2nd Quantile 109.11 42193.57 109.11 36.85 97.04 113.75 97.04 29.15

Max 109.11 42193.57 109.11 622.17 97.04 113.75 109.11 110.93

Standard deviation 0.00 0.00 8.59 51.28 0.00 0.00 4.46 12.5

OC - optimization criterion calculated as 100 * (%ARC * %ARC) / (%ASD * %MDD). The optimization criterion has been calculated
from the sample of 1000 independent algorithm executions. The strategies have been working on the daily frequency, investing 20% of
capital in position on each asset with rebalancing every 5 trading days. Trading from the beginning of 1998 to the end of 2013 has been
simulated, with the assumption of fee equal to 0.25% of the position value.

0

200

400

600

800

100 105
Optimization Criterion OC

co
un

t

0

100

200

30 60 90
Computation time [sec]

co
un

t

Fig. 11: The histograms of the reached optimization criterion and the execution time of DEM for HGFCBF – in-sample
OC - optimization criterion calculated as 100 * (%ARC * %ARC) / (%ASD * %MDD). The optimization criterion has been calculated
from the sample of 1000 independent algorithm executions. The strategies have been working on the daily frequency, investing 20%
of capital in position on each asset with rebalancing every 5 trading days. Trading from the beginning of 1998 to the end of 2013 has
been simulated, with the assumption of fee equal to 0.25% of the position value.

225 CEEJ 5 • 2018 • 206−229 • ISSN 2543-6821 •https://doi.org/ 10.1515/ceej-2018-0021

selected the point from the more stable neighbourhood,
what resulted in better performance in the out-of-sam-
ple period, what showed a potential of machine learning
in reducing overfitting risk.

5.5 The comparison of tested methods
with the Exhaustive Search

Throughout the paper, three machine learning optimi-
zation methods, adjusted to the problem specificity,
were discussed. The performance of each method was
tested by solving three problems of selection of trading
strategy parameters on the period from the beginning of
1998 to the end of 2017. The machine learning algorithms
solved the problem in significantly shorter time than
the Exhaustive Search procedure with no significant dif-
ference in the results’ quality.

As noted before, the machine learning methods
gave results similar to the optimal ones obtained by
the Exhaustive Search procedure. The critical difference
was in the computation time. Checking all the possi-
ble parameters required plenty of time. It lasted a few
hours, whereas the machine learning methods pro-
duced the comparable results in a fraction of a minute.
The advantage in time efficiency would be critical for

complex problems, for instance, considering a larger
parameter space. The relative time difference was sig-
nificant, for instance, DEM took over 1650 times less
time than the full exhaustive procedure in the SPXDAX
and AAPLMSFT cases. Assuming the same proportion,
the DEM optimization, requiring less than one hour
could replace the ES lasting two months. The results
obtained in the paper suggested that machine learning
methods introduced before could be an effective replace-
ment for the Exhaustive Search, reducing the computa-
tion time without affecting the quality of results (Tab. 8
and Tab. 9).

The first box plot (Fig. 13) presents the optimiza-
tion criterion across the samples. There are almost no
significant differences between the results of the tested
methods. The second box plot (Fig. 14) presents the com-
putation time across the samples. The GM had sub-
stantially higher median time, compared to the other
machine learning methods, but without uncertainty.
The time required for DEM execution was relatively low
and stable, especially compared with EHC, which had
lower time stability, which was illustrated on Fig. 14 by
the box size and plenty of outliers.

250

500

750

1000

1250

2014 2015 2016 2017 2018
Date

eq
ui

ty
 li

ne
s,

 n
or

m
al

iz
ed

 p
ric

e

CB.F
EHC, GM,
DEM
ES

HG.F

Fig. 12: The equity lines of the strategies selected by the different methods for HGFCBF – out-of-sample
SPX - S&P500 Index, DAX - Deutscher Aktienindex, ES, EHC, GD, DEM - equity line of the median strategy resulted from respec-
tively Exhaustive Search, Extended Hill Climbing, Grid Method and Differential Evolution Method. Prices of the both assets have
been normalized in order to have initial value equal to 1000. The equity line has been calculated for the strategy working on daily
frequency, investing 20% of capital in position on each asset with rebalancing every 5 trading days. Trading from the beginning of
2014 to the end of 2017 has been simulated, with the assumption of fee equal to 0.25% of the position value.

P. Ryś, R. Ślepaczuk / Machine Learning Methods in Algorithmic Trading Strategy Optimization 226

Tab. 8: Mean and median optimization criterion reached by the different methods, referred to the ES method in percent – in-sample

ES Grid EHC median DEM median EHC mean DEM mean

SPXDAX 100 99.19 99.19 99.19 97.62 99.42

AAPLMSFT 100 100.00 100.00 100.00 99.55 99.92

HGFCBF 100 88.94 88.94 88.94 89.65 90.74

SPXDAX - case of trading on S&P500 Index and Deutscher Aktienindex, AAPLMSFT - case of trading on Apple Inc. and Microsoft Corp.
stocks, HGFCBF - case of trading on High-Grade Copper and Crude Oil futures. ES - the Exhaustive Search, EHC - the Extended Hill
Climbing, DEM - the Differential Evolution. The simulations has been performed for the strategy working on daily frequency, investing
20% of capital in position on each asset with rebalancing every 5 trading days. Trading from the beginning of 1998 to the end of 2013 has
been simulated, with the assumption of fee equal to 0.25% of the position value.

Tab. 9: Mean and median computation time of the methods, referred to the ES method in percent

ES Grid EHC median DEM median EHC mean DEM mean

SPXDAX 100 0.35 0.08 0.09 0.12 0.12

AAPLMSFT 100 0.46 0.06 0.07 0.08 0.07

HGFCBF 100 0.27 0.08 0.05 0.10 0.06

SPXDAX - case of trading on S&P500 Index and Deutscher Aktienindex, AAPLMSFT - case of trading on Apple Inc. and Microsoft Corp.
stocks, HGFCBF - case of trading on High-Grade Copper and Crude Oil futures. ES - the Exhaustive Search, EHC - the Extended Hill
Climbing, DEM - the Differential Evolution. The simulations has been performed for the strategy working on daily frequency, investing
20% of capital in position on each asset with rebalancing every 5 trading days. Trading from the beginning of 1998 to the end of 2013 has
been simulated, with the assumption of fee equal to 0.25% of the position value.

70

80

90

100

EHC 1 GM 1 DEM 1 EHC 2 GM 2 DEM 2 EHC 3 GM 3 DEM 3
method and case number

op
tim

iz
at

io
n

cr
ite

rio
n

(%
)

Fig. 13: The boxplot of the optimization criterion of strategies selected by the machine learning methods, as a percentage of
the global maxima found by the Exhaustive Search

The samples were denoted by the algorithm acronym and the number of trading case, so 1, 2 and 3 stands for respectively SPXDAX,
AAPLMSFT and HGFCBF. The box plots present the empirical distribution quartiles and highlight the outliers. Half of the obser-
vations are inside the corresponding box, when the line inside marks the median. The observation was considered as an outlier
and marked by a circle if the distance from both first and third quartile (from the nearest side of the box) was higher than 1.5 inter-
quartile range. The range of observations, without outliers was marked by the whiskers. That type of box plot was often called
the Turkey Box Plot. It was worth to notice that the box plots of the Grid Method results were just a line because the results of that
method were deterministic.

227 CEEJ 5 • 2018 • 206−229 • ISSN 2543-6821 •https://doi.org/ 10.1515/ceej-2018-0021

6 Conclusions

Three machine learning methods (EHC, GM and DEM)
were implemented and tested on simple moving aver-
ages’ crossover strategy optimization problem. Machine
learning methods were a heuristic searches, based on
simple algorithms, commonly used for similar prob-
lems. The methods were adjusted to the considered
problem specificity, such as discreteness of parameters
or low regularity of the solution space.

Machine learning methods were compared based
on the value of optimization criterion, including annual-
ized rate of return from strategy and two risk measures –
the annualized standard deviation and the maximum
drawdown. All the statistics were calculated for the sim-
ulated trading on the period from the beginning of 1998
to the end of 2013. The optimization criterion calculated
for the strategies and the computation time, required to
proceed the whole search process, were compared with
the Exhaustive Search. The considered strategies were
traded on the specified pairs of assets and were tested
separately on SPX and DAX indexes futures, AAPL and
MSFT stocks, and finally, on the pair composed of two
commodity futures – HG.F and CB.F.

The strategies were compared, in terms of the opti-
mization criterion, based on the annualized returns
and including the risk metrics, such as the annualized
standard deviation of returns and the maximum draw-
down of the equity line. Applying such an approach in

the optimization process led to the selection of more
stable strategies. Using maximum drawdown compo-
nent eliminated the strategies generating all profits in
one short period of time. That approach significantly
reduced the risk of overfitting, caused by the adjustment
strategy to a few past extreme market situations.

The first method, called the Extended Hill Climbing
was composed of the independent local search walks,
starting in the randomly drawn points with specified
stopping rule, based on the level of optimization crite-
rion improvement in the previous steps. That method
generated stable results, which means that the strategies
returned by the different program executions should be
similar to each other. The method produced results com-
parable to the optimal one in relatively short time, but
the stability of the execution time was low. On average,
the method was quick and efficient, but the time of
the whole process was varied.

The second implemented ML method was purely
deterministic algorithm, called the Grid Method. The main
idea of the search was to use denser and denser sub-
grids, centred at the points with high optimization cri-
terion value. The method returned the strategy param-
eters, with optimization criterion similar to the optimal
one with time a few times longer than two other ML
methods, but still a few times shorter than the full
exhaustive procedure. The big advantage of that method
is the stable computation time and results, which came
from its deterministic nature. This property of the opti-

0

200

400

600

EHC 1 GM 1 DEM 1 EHC 2 GM 2 DEM 2 EHC 3 GM 3 DEM 3
method and case number

co
m

pu
ta

tio
n

tim
e

[s
ec

]

Fig. 14: The boxplot of machine learnings methods’ computation time empirical distribution
The samples were denoted by the algorithm acronym and the number of trading case, so 1, 2 and 3 stands for respectively SPXDAX,
AAPLMSFT and HGFCBF. The box plots presents the empirical distribution quartiles and highlight the outliers. A half of the obser-
vations are inside the corresponding box, when the line inside marks the median. The observation was considered as an outlier
and marked by a circle if the distance from both first and third quartile (from the nearest side of the box) was higher than 1.5 inter-
quartile range. The range of observations, without the outliers was marked by the whiskers. That type of box plot was often called
the Turkey Box Plot. It was worth to notice that the box plots of Grid Method results were just a line because the results of that
method were deterministic.

P. Ryś, R. Ślepaczuk / Machine Learning Methods in Algorithmic Trading Strategy Optimization 228

mization procedure could be appreciated especially for
usage in more complex, automatic systems.

The last method, called the Differential Evolution, is
in fact one of the most popular heuristic algorithm to
solve irregular continuously parameterized problems,
adjusted to the specificity of integer parameter spaces.
The adjustment was based on the transformation of
the discrete solution space into the continuous one, in
a way preserving the problem specificity.

The performance of strategies in the in-sample
period was better than in the out-of-sample. Despite
the main goal was to introduce and compare optimi-
zation methods, it is worth to point out the difference
between in-sample and out-of-sample strategies’ accu-
racy. The strategies optimized by different methods
in the in-sample periods bear losses in the out-of-
sample period for two out of three cases (SPXDAX
and AAPLMSFT). The unsatisfactory results during
the second period led us to the conclusion, that
the selected strategies were not supposed to generate
profit in the future. The considered models had rel-
atively few parameters, but it was enough to produce
an overfitted strategy, too well-adjusted to the training
data, and in consequence, ineffective on the test set.

Slightly different situation was in the case of
out-of-sample results for commodity futures trading
(HG.F CB.F). In that case, all the tested machine learn-
ing methods omitted the strategy with the higher opti-
mization criterion in the in-sample period, probably
because of the weak performance of neighbouring
strategies. In consequence, the strategy selected by all
the methods (in fact strategy with median optimization
criterion across the sample) performed well in the out-
of-sample period, generating profits, while the one with
the highest optimization criterion was bearing losses. It
seems to confirm the basic intuition – the model avoided
overfitting to the training dataset, which caused worse
performance there, but also gave a chance to get better
results in the future. Selected simple moving averages
crossover strategies were generally not profitable on
the price time series from outside the training set, but
there was a significant premise; the machine learning
methods developed in this paper, could be used to opti-
mize trading systems, based on another logic and signif-
icantly improve its computation time. The optimization
time is crucial, because the shorter the time, the faster
the results of the optimization are available for a super-
visor or the wider space of parameters and more sophis-
ticated systems can be fitted in an efficient way.

To sum up, the presented results seems to be con-
sistent with the main hypothesis. The machine learning
methods required much less time than the Exhaustive
Search and produced similar results in the considered
cases. In consequence, the main hypothesis was not
rejected. The machine learning methods reached only
slightly worse in-sample optimization criterion but in
a significantly lower execution time. The additional
research question, that the machine learning methods
leads to lower overfitting risk, could not be answered
based on the results presented in this paper. In two
scenarios, the machine learning methods selected very
similar strategies to the optimal one. Nevertheless,
the methods selected worse strategies in the in-sample
period in the last case; the final strategy generated profit
in the out-of-sample period, while the one obtained
by the ES resulted in the loss of the invested capital.
The property of the overfitting reduction was observed
only in one case, so it cannot lead to certain conclusions.

Bibliography
[1] Ardia D., Boudt K., Carl P., Mullen K. M., Peterson B.G.

Differential Evolution with DEoptim: An Application to
Non-Convex Portfolio Optimization. The R Journal, 2010.

[2] Ardia D., Boudt K., Carl P., Mullem K. M., Peterson B.G.
Large-scale portfolio optimization with DEoptim. CRAN R, 2011a.

[3] Breiman L. Statistical Modeling: The Two Cultures. Statistical
Science 2001, Vol. 16, No. 3, Pages 199–231, 2001.

[4] Brest J. et al. Self-Adapting Control Parameters in Differential
Evolution: A Comparative Study on Numerical Benchmark
Problems. IEEE Transactions on Evolutionary Computation,
Volume 10, Issue 6, 2006.

[5] Choundhry R., Kumkum G. A Hybrid Machine Learning
System for Stock Market Forecasting. International Journal of
Computer and Information Engineering Vol:2, No:3, 2008.

[6] Conceicao E. Differential Evolution Optimization in Pure R.
CRAN R Project, 2016.

[7] Dunis C.L, Nathani A. Quantitative trading of gold and silver
using nonlinear models Neural Network World: International
Journal on Neural and Mass – Parallel Computing and
Information Systems, 2007.

[8] Gunasekarage A., Power D.M. The profitability of moving
average trading rules in South Asian stock markets. Emerging
Markets Review, Volume 2, Issue 1, Pages 17–33, 2001.

[9] Hastie T., Tibshirani R., Friedman J. H. The Elements of
Statistical Learning. Springer, 2001.

[10] Hastie T., Tibshirani R., James G., Witten D. An Introduction to
Statistical Learning: With Applications in R. Springer, 2013.

[11] Shen S., Jiang H., Zhang T. Stock Market Forecasting Using
Machine Learning Algorithms. Department of Electrical
Engineering, Stanford University, Stanford, CA, 1–5, 2012.

229 CEEJ 5 • 2018 • 206−229 • ISSN 2543-6821 •https://doi.org/ 10.1515/ceej-2018-0021

[12] Juels A., Wattenbergy M., Stochastic Hillclimbing as a Baseline
Method for Evaluating Genetic Algorithms. Advances in Neural
Information Processing Systems 8, 1995.

[13] Dahlquist J.R., Kirkpatrick C.D. Technical Analysis:
The Complete Resource for Financial Market Technicians. FT
Press, 2011.

[14] Patel J., Shah S., Thakkar P., Kotecha K. Predicting stock and
stock price index movement using Trend Deterministic Data
Preparation and machine learning techniques. Expert Systems
with Applications Volume 42, Issue 1, Pages 259–268, 2015.

[15] Mullen K. et al. Package ‘DEoptim’ – Global Optimization by
Differential Evolution. CRAN R Project, 2016.

[16] Pardo R. The Evaluation and Optimization of Trading Strategies.
Wiley Trading, 2011.

[17] Radford M.N. Probabilistic Inference Using Markov Chain Monte
Carlo Methods. Technical Report CRG-TR-93-1, Department
of Computer Science University of Toronto, 1993. s Ritter G.
Machine Learning for trading. New York, 2017.

[18] Russell S.J., Nowig P. Artificial Intelligence – A Modern
Approach, Second Edition. Pearson Education, Inc. 2003.

[19] Samuel A. *Some Studies in Machine Learning Using
the Game of Checkers“*. IBM Journal of Research and
Development 3(3): pages 210–229, 1959.

[20] Skiena S. S. The Algorithm Design Manual, Second Edition.
Springer-Verlag London Limited, 2008.

[21] Smola A., Vishwanathan S.V.N. Introduction to Machine
Learning. Cambridge University Press, 2008.

[22] Stanković J., Marković I., Stojanović M. Investment Strategy
Optimization Using Technical Analysis and Predictive Modeling
in Emerging Markets. Procedia Economics and Finance
Volume 19, 2015. Pages 51–62.

[23] Storn, R.M, Price, K.V Differential Evolution – A Simple and
Efficient Heuristic for Global Optimization over Continuous
Spaces. Journal of Global Optimization, 1997. Pages 341–359.

[24] Storn, R.M., Price, K.V. Lampinen J.A. Differential Evolution –
A Practical Approach to Global Optimization. Berlin Heidelberg:
Springer-Verlag, 2006.

[25] Valiant L. A theory of the learnable. CACM, 1984.

