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Abstract: The main aim of this paper was to formulate and analyse the machine learning methods, fitted to the strat-
egy parameters optimization specificity. The most important problems are the sensitivity of a strategy performance 
to little parameter changes and numerous local extrema distributed over the solution space in an irregular way. 
The methods were designed for the purpose of significant shortening of the computation time, without a substan-
tial loss of strategy quality. The efficiency of methods was compared for three different pairs of assets in case of 
moving averages crossover system. The problem was presented for three sets of two assets’ portfolios. In the first 
case, a strategy was trading on the SPX and DAX index futures; in the second, on the AAPL and MSFT stocks; and 
finally, in the third case, on the HGF and CBF commodities futures. The methods operated on the in-sample data, 
containing 16 years of daily prices between 1998 and 2013 and was validated on the out-of-sample period between 
2014 and 2017. The major hypothesis verified in this paper is that machine learning methods select strategies with 
evaluation criterion near the highest one, but in significantly lower execution time than the brute force method 
(Exhaustive Search).

Keywords: Algorithmic trading, investment strategy, machine learning, optimization, investment strategy, differ-
ential evolutionary method, cross-validation, overfitting.
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1  Introduction

The last years witnessed a huge growth of the machine 
learning popularity and its quick development. 
The  newly established algorithms were used to solve 
many difficult problems from various fields of science 
and to produce solutions facilitating many areas of life. 
Therefore, the application of such methods to improve 
the process of strategy adjustment seemed to be a natural 
choice.

The  main aim of this study was to formulate and 
analyse the machine learning methods, fitted to the strat-
egy parameters’ optimization specificity. The  most 
important problems are the sensitivity of a strategy per-
formance to little parameter changes and numerous local 
extrema distributed over the solution space in an irregu-
lar way. The methods were designed for the purpose of 
significant shortening of the computation time, without 
a substantial loss of a strategy quality. The efficiency of 
methods was compared for three different pairs of assets 
in case of moving averages crossover system. Consid-
ered algorithms – the  Extended Hill Climbing, Grid 
Method and Differential Evolution Method are based on 
the well-known machine learning methods or intuitive 
ideas based on observation of previous steps in order to 
improve the next ones.

The  machine learning methods, discussed in this 
paper were designed to select the strategy parameters in 
order to maximize strategy performance, measured by 
the specified optimization criterion. The methods oper-
ated on the in-sample data, containing 16 years of daily 
prices, and their results were verified on 4 years of out-
of-sample data. In the first case, a strategy was trading 
on the  SPX and DAX index futures, in the  second on 
the AAPL and MSFT stocks and finally, in the third case 
on the HGF and CBF commodities futures.

The major hypothesis verified in this paper is that 
results of the  machine learning methods are the  same 
or only slightly worse than the  ones near the  highest 
evaluation criterion, obtained by the Exhaustive Search 
(brute force approach), but the  time required for their 
execution is significantly lower than computation time 
of checking all the  points from the  solution space. 
The  additional research question is that the  strategies 
obtained by the  machine learning methods are associ-
ated with a lower risk of overfitting than the strategies 
resulted from the Exhaustive Search procedure.

The  distributions of optimization criteria and 
the  computation time of 1000 executions of different 
methods were compared and presented along with 

the  Exhaustive Search results. The  adjustment quality 
was assessed on in-sample data and additional out of 
sample data in order to test the  overfitting tendency. 
Let us emphasise that the purpose of this paper is not 
to design the  most profitable strategy, but to compare 
the efficiency of different machine learning methods and 
the Exhaustive Search (brute force). Tests in the out-of-
sample period were performed to assess the overfitting 
problem. The  simulations for different sets of assets 
was executed in the same framework implemented for 
the purpose of this research.

The  basic machine learning methods have serious 
disadvantages. For instance, the well-known Hill Climb-
ing returns the  local extremum, without guarantee of 
reaching the global one. That algorithm is inadequate for 
the global search problem, but it could be used as a main 
component of more complex and efficient methods of 
global optimization.

Since the  machine learning methods proved their 
value, by solving plenty of complicated problems, hence, 
it was reasonable to expect the satisfying results of such 
methods used for the strategy optimization. The initial 
intuition was that the machine learning methods would 
return the results a bit worse than the optimal one, but 
in disproportionately shorter time, than checking all 
the possibilities in order to get the best ones (the Exhaus-
tive Search).

Moreover, it was expected that the machine learn-
ing methods were less likely to overfit strategy than 
the  Exhaustive Search. The  discussed methods were 
based on an assumption that conditional expected 
value of the optimization criterion is usually higher for 
the points surrounded by those with high value of this 
criterion. Therefore, the  low regularity of the  solution 
space could be a real obstacle for the methods’ perfor-
mance. There was no reason to assume even a moder-
ate level of the space regularity, so the machine learning 
methods probably could not find the optimal points, if 
they were not in the high-valued neighbourhood. That 
property could lead to reducing overfitting risk, because 
usually, the parameter vector surrounded by those with 
similar strategy performance have a bigger chance to 
be profitable in the future, than those from a less stable 
place. 

The structure of this paper is composed as follows. 
The second chapter contains the literature review. In 
the third part, machine learning methods used in this 
paper are explained, as well as the trading assumptions 
and basic terms. The fourth chapter is devoted to data 
description, when the fifth contains efficiency tests of 
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considered machine learning methods, with special 
focus on the optimization criterion and computation 
time distributions . The summary of results and conclu-
sions are included in the last part.

2  Literature review

The machine learning methods have been developed for 
decades, even before that term was coined in the fifties 
(Samuel, 1959). Nevertheless, the  increased interest in 
that field was observed in recent years due to the tech-
nical possibility to apply the  artificial intelligence in 
the various fields of science and life. The phenomenon 
of learning from the computational viewpoint was dis-
cussed by Valiant (1984). The  human’s natural ability 
to learn and adapt was presented in terms of the infor-
mation’s selection and automatic adjustment process, 
resulting in the algorithm’s modifications.

This approach is followed by plenty of the modern 
machine learning methods and it is close to the general 
ideas of the classic statistical modelling, where includ-
ing new dataset leads to changes in the model proper-
ties. The  traditional statistical and econometric models 
usually assume that data is produced by the stochastic 
process from the  specified class. The  fitting procedure 
is aimed at finding the process accurate to actual data 
when the  machine learning methods are often based 
on the  iterated improvements without specified model 
form. The  differences between these two approaches 
called data models and algorithmic models respectively, 
are widely discussed in Breiman (2001). The  field of 
machine learning contains plenty of various algorithms 
and methods, used to solve a wide range of problems. 
Some methods have strong mathematical foundations, 
for instance, methods based on Markov Chain Monte 
Carlo (Neal, 1993), when others, such as the Hill Climb-
ing or evolutionary methods, are based on heuristic 
approach (Juels and Wattenbergy, 1994). The commonly 
used methods and algorithms with application in scien-
tific problems are discussed by Hastie et al. (2013) and 
Hastie et al. (2001).

The  algorithmic strategies are widely used in 
the  financial markets, but most of them are not dis-
cussed in papers, due to exclusive character. Neverthe-
less, some types of the quantitative strategies are widely 
known, and therefore, discussed in books and papers. 
The strategy based on the technical analysis indicators, 
such as the  simple moving average crossover method 

considered in this paper is analysed for specified cases 
in Gunasekarage and Power (2001). Since machine learn-
ing methods have started to gain popularity, as a tool to 
solve problems in various fields, numerous attempts to 
use it for trading strategies occurred. Beyond the com-
mercial usage, many academic papers describing strate-
gies, with logic based on a machine learning have been 
published. For example group of researchers at Sanković 
et al. (2015), presented the strategy, based on the techni-
cal analysis and least squares support vector machines. 
In contrast to this paper, they used machine learning 
methods as a part of a system generating trading signals, 
not as a part of system optimization process.

The more recent research was conducted by Ritter 
(2017), who used Q-learning with the  proper reward-
ing function to handle the  risk-averse case and tested 
strategy in the  simulated trading. Dunis and Nathani 
(2007) presented the  quantitative strategies, based on 
the neural networks such as the Multilayer Perceptron 
(MLP), Higher Order Neural Networks (HONN) and on 
the K-Nearest Neighbours method. The authors proved 
that methods can be effectively used for generating 
excess returns from trading on gold and silver. The com-
parison between the  performance of machine learn-
ing methods and the  linear models of ARMA type not 
only lead to construct a better strategy but additionally 
showed the presence of nonlinearities in the considered 
time series.

The  application of the  machine learning methods 
in order to predict future prices nowadays becomes 
more and more popular. Shen, Jiang and Zhang (2012) 
presented the  forecasting model for stock market 
indexes, based on Support Vector Machines, and tested 
the trading system based on the produced predictions. 
Similar approach was followed by Choundhry and 
Kumkum (2008), where they introduced the  hybrid 
machine learning system, combining support vector 
machines with genetic algorithm in order to predict 
the  stock prices. The  machine learning methods were 
used for predicting by Patel et al. (2015) in a more recent 
research as well. The  paper is focused on methods of 
data pre-processing for purposes of further forecasting. 
Therefore, many books and papers discuss the general 
aspects and methods, such as walk-forward optimiza-
tion (Kirkpatrick and Dahlquist, 2011 or Pardo, 2011).

Differential evolution, which is one of the methods 
considered in this paper, was designed by Storn and 
Price (1997) and discussed in further papers, such as 
Price et al. (2006). The  algorithm was proposed for 
solving complicated problems with irregular solution 
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space. It was used to solve non-convex portfolio optimi-
zation problems in Ardia et al. (2010) and the problem of 
minimizing CVAR for the large-scale portfolio in Ardia 
et al. (2011a). The method proved to be an efficient and 
effective way to optimize complex problems.

3  Machine learning methods and 
their benchmark

3.1  Basic terms and methodological issues

All the statistics used in the optimization criterion were 
determined by the equity line and could be easily cal-
culated based on it. Therefore, the  calculations of net 
profits and losses (PnLs) were the most complex com-
ponent of the strategy evaluation procedure. The system 
was based on the  technology called Rcpp, allowing to 
use efficient C++ programs inside R project. More pre-
cisely, the  main function for calculating net PnL was 
implemented in Rcpp framework in order to accelerate 
computations based on loops. Other parts of system 
were designed in R due to vectorization possibility and 
high-performance of build in functions.

3.1.1  Statistics and risk metrics used in the paper

•	 Annualized rate of return – relative change of an 
asset value, normalized according to time. The annu-
alized rate of return calculated for the asset of value 
Vt in specified period (t1, t2) is defined by the follow-
ing formula:

𝐴𝐴𝐴𝐴𝐴𝐴(𝑉𝑉)𝑡𝑡1
𝑡𝑡2 = (

𝑉𝑉𝑡𝑡2
𝑉𝑉𝑡𝑡1

)
1

𝐷𝐷(𝑡𝑡1,𝑡𝑡2) − 1 	 (1)

where: D(t1, t2) stands for the time between t1 and t2 
in years.

•	 Maximum drawdown – the  maximum percentage 
loss of value of the value process. For process Vt and 
period [t1, t2], the  maximum drawdown is defined 
by the following formula:

𝑀𝑀𝑀𝑀𝑀𝑀(𝑉𝑉)𝑡𝑡1
𝑡𝑡2 = 𝑠𝑠𝑠𝑠𝑝𝑝(𝑥𝑥,𝑦𝑦)∈{[𝑡𝑡1,𝑡𝑡2]2 : 𝑥𝑥 ≤𝑦𝑦}

𝑉𝑉𝑥𝑥 − 𝑉𝑉𝑦𝑦
𝑉𝑉𝑥𝑥

 	 (2)

•	 Annualized standard deviation – the  empiri-
cal standard deviation normalized, according to 
the time. For specified time series Rt, the annualized 
standard deviation in the period [t1, tn] is calculated 
by using the formula:

𝐴𝐴𝐴𝐴𝐷𝐷(𝑉𝑉)𝑡𝑡1
𝑡𝑡𝑛𝑛 = √

1
𝑛𝑛∑ (

𝑡𝑡𝑛𝑛

𝑡𝑡=𝑡𝑡1
𝑅𝑅𝑡𝑡 − 𝑅𝑅)2 ∗ 1

𝐷𝐷(𝑡𝑡1, 𝑡𝑡𝑛𝑛)
 	 (3)

where: 𝑅𝑅 = 1𝑛𝑛∑ 𝑅𝑅𝑡𝑡
𝑡𝑡𝑛𝑛

𝑡𝑡=𝑡𝑡1
  

and D(t1, t2) is the time between t1 and t2 in years.

•	 Moving average - for the specified time series St and 
the wages vector w = (w0, w1,...) the moving average 
is a time series given by the formula:

𝑀𝑀𝑀𝑀(𝑆𝑆)𝑡𝑡𝑤𝑤 =∑ 𝑆𝑆𝑡𝑡−𝑖𝑖𝑤𝑤𝑖𝑖
𝑡𝑡

𝑖𝑖=0
 .	 (4)

3.1.2  Assumptions

The main problem was to find the best investment strat-
egy in the specified class of strategies, following the two 
simple moving averages crossover approach. The behav-
iour of each strategy was fully determined by a vector of 
parameters from four-dimensional space Ψ, each stand-
ing for different moving average window width. More 
specifically, every strategy from Ψ was parametrized 
by a vector p = (p1, p2, p3, p4) ∈Ψ, such that the trading 
signals

𝑈𝑈𝑡𝑡
𝑖𝑖  for i∈ {1, 2} were given by the following formula:

𝑈𝑈𝑡𝑡𝑖𝑖 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑀𝑀𝐴𝐴1𝑖𝑖 (𝑆𝑆𝑖𝑖)𝑡𝑡−1 − 𝑀𝑀𝐴𝐴2
𝑖𝑖 (𝑆𝑆𝑖𝑖)𝑡𝑡−1) 	 (5)

where: 𝑀𝑀𝐴𝐴𝑗𝑗𝑖𝑖(𝑆𝑆𝑖𝑖)  denoted the simple moving average of 
length p2i+j–2 for price series Si, which means that p1 and p2 
stands for lengths of moving averages used for the first 
asset, and analogously p3 and p4 refer to the second asset. 
Additionally, we took convention that strategy com-
ponent is called momentum if the  first moving average 
length is smaller than the second, and analogously con-
trarian if the first moving average length is higher.

Optimization criterion was based on the  typical 
descriptive statistics used by traders – the  annualized 
returns (ARC), the annualized standard deviation (ASD) 
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and maximum drawdown (MDD). The  criterion was 
determined by the following formula:

𝑂𝑂𝑂𝑂 = 𝐴𝐴𝐴𝐴𝐴𝐴 ∗ |𝐴𝐴𝐴𝐴𝐴𝐴|
𝐴𝐴𝐴𝐴𝐴𝐴 ∗ 𝑀𝑀𝑀𝑀𝑀𝑀  	 (6)

The  construction of the  optimization criterion OC 
reflected the preference of moderately profitable strate-
gies with low risk, over the high-profitable ones, associ-
ated with much higher risk. That approach was designed 
to find more safe and stable strategies, in order to gen-
erate profits in the  future. This criterion additionally 
punished strategies with high MDD, which means that 
the strategies with lower returns and constant increasing 
trend are more likely to be selected than the more prof-
itable ones, associated with periods of significant losses.

Conditions on the  financial markets were different 
during the  tested time period, from 1998 to 2017. For 
the sake of simplicity, the constant transactional percent-
age costs were assumed. In the simulated trading, every 
trade required bearing the fee equal to 0.25% of its value. 
Additionally, we assumed leverage on the level of 40%, 
which means that every considered strategy invested 
20% of the  total account balance on each asset (40% in 
total). The  rebalancing took place once each 5 trading 
days.

The  available strategies were fully determined 
by four parameters, standing for moving averages 
widths. Consequently, the  strategy was optimized 
on the  parameters (solution) space Ψ composed of 
vectors of four numbers from the set {1, 5, 10, ... , 100} 
(i.e., Ψ = {1, 5, 10, ... , 100}4).

3.2  Specificity of the problem

The problem of selecting the best parameters of a trading 
strategy could be parametrized and reformulated in 
terms of optimization. The optimization criterion (OC) 
is, as specified before, calculated based on annualized 
returns and risk measures. The  parameter space and 
the reward function had some important properties, that 
need to be included in the machine learning methods’ 
design in order to meet the  problem specific require-
ments and reach better efficiency.

Solution space (Ψ) is discrete; thus, the application 
of algorithms, based on the steps of decreasing size, was 
strictly limited. Moreover, the function being optimized 
had no simple analytical formula. In consequence, 
there was no way to apply popular gradient-based 

methods. The OC could be obtained from the statistics 
of the equity line for the specified strategy parameters. 
The  calculations were not very complicated, but they 
required relatively long time to be executed. The  high 
time complexity was caused by the calculation of profits 
and losses for every trading day. Therefore, the  main 
difficulty was caused rather by the  time expensive cri-
terion evaluations, than by the big number of possible 
parameter combinations (194 481).

Additionally, the  performance of automatic strat-
egies is usually sensitive to the  parameters’ change; 
therefore, even subtle difference could severely affect 
the results. In consequence, one can expect multiple local 
extrema scattered over the parameter space and big dif-
ferences in criterion value of the points near each other. 
High sensitivity of the optimization criterion (objective 
function) to the parameters was crucial for the machine 
learning efficiency and led to the  selection of more 
complex methods, adjusted to the  problem specificity. 
Although the optimization criterion was unstable, some 
level of regularity was necessary for machine learning 
methods to work. Machine learning algorithms selected 
the  points (candidate solutions), surrounded by other 
with the  high criterion value, which could positively 
affect results’ stability and reduce overfitting risk.

The  machine learning methods presented in this 
paper are based on well-known concepts. The  main 
effort was to design methods based on these algorithms, 
but able to run on an atypical problem, hard to be solved 
by the basic ones. Although the presented methods could 
result in lower overfitting risk, the paper was focused on 
the improvement of the strategy selection procedure in 
terms of time, and hence no features aimed at reducing 
the overfitting risk would be discussed.

3.3  Extended Hill Climbing (EHC)

The basic Hill Climbing is a local search method, based 
on a very intuitive approach – going always in the way 
that improves the  situation. The  method operates on 
a graph, composed of nodes (points) with optimization 
criterion value and edges, which determine the relation 
of being neighbours. The basic Hill Climbing algorithm is 
a simple loop, starting at the specified point and repeat-
edly changing current point to its neighbour with higher 
optimization criterion value, as long as an improvement 
was possible by making the  step forward. The classic 
Hill Climbing procedure checks all the neighbours and 
selects the one with the highest value. The method trav-
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erses the parameter space with only one rule of always 
going up, using no information from the  past, except 
the current position. The accurate parallel for that algo-
rithm is ‘trying to find the top of Mount Everest in a thick 
fog while suffering from amnesia’ (Russell and Nowig, 
2003). The  method can find only the  local extremum, 
thus it is local search. That is the significant limitation of 
this method’s use, because there was no reason to expect 
that method will end search in one of the best solutions. 
Neighbours are often defined as points with the speci-
fied distance between them. In this case, the algorithm 
traverses the  parameter space using steps of the  same 
size. The  Hill Climbing is well-adjusted for problems 
with great regularity, such as convex ones, where 
exactly one local maximum exists (Skiena, 2008). It is 
no reason to assume that the  considered problem has 
that property, therefore, the main effort in this method 
improvement was made by adjusting method to spaces 
with many local maxima.

The  Extended Hill Climbing (EHC) is composed of 
the independent Hill Climbing executions, called walks. 
These walks are starting at different random points 
and the best result among them is returned at the end. 
Every single walk procedure checks the  neighbours 
of the  current point and goes ahead when the  first 
improvement is found. It is a substantially different 
approach than followed by the  classic one, reducing 
computation time, because it does not require cal-
culating optimization criteria for all the  neighbours. 
Another new feature is the use of a few different neigh-
bours’ structures. More specifically, algorithm checks 
the  neighbours differing by exactly one parameter, 
which implies that a walk is on the perpendicular multi-
dimensional grid, similar to the chess rook. At the very 
beginning and after making every move, the algorithm 
checks points with distance at specified, relatively high 
levels. When no improvement is possible, the  method 
checks points with lower distance from the current one. 
This procedure is repeated until no improvement is 
possible; either the next move is made or the specified 
minimum stepsize is exceeded. The  stepsize series is 
defined as 

{𝐹𝐹, ⌈𝐹𝐹𝑘𝑘⌉ , ⌈
𝐹𝐹
𝑘𝑘2⌉ , . . . ,1} ,	

where F is a starting step, in this paper, equal to 5 and k 
is equal to 2. The initial preference of big steps resulted 
in fast crossing the space and the possibility of walking 
by small steps allowed the  algorithm to finally search 

the small neighbourhood in order to find solution with 
optimization criterion as high as possible. This feature is 
a crucial element of the method – algorithm uses steps of 
various sizes; thus, a supervisor does not need to select 
step size as cautiously as for method with fixed step size. 
What is more, method always uses the step of minimal 
size at the end; the neighbourhood of the best point is 
precisely explored.

The  number of walks required to get satisfying 
results is stochastic. Thus, declaring the  fixed number 
could result in low stability of results – the  difference 
between optimization criteria obtained in the independ-
ent optimizations could be significant. The  extended 
method set the  number of walks in a  dynamic way, 
dependent on the efficiency of previous walks. The algo-
rithm starts twice as many new walks, if the  previous 
set of walks improved the optimization criterion, which 
suggests that there is still a possibility to improve results. 
That solution guarantees the higher results’ stability, at 
the expense of the time stability. The time required for 
execution could be much higher, when the method starts 
in a different starting point, but on the other hand, ‘bad’ 
starting points should not affect the final results. In this 
paper, the initial number of walks is equal to 10.

Algorithm pseudocode.
Metaparameters: initialIterationsNumber, k, initial-

Step. Let us clarify, that unitVectori denotes the i-th unit 
vector of space 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂:𝛹𝛹Ψ = {1,5, … ,100}4 → Rℝ d that is, vector of zeroes with 1 on i-th 
coordinate – unitVectori = ei = (0,..., 0, 1, 0,..., 0). Result of 
an operation x + c × ei is simply vector x with i-th coor-
dinate increased by c (decreased by -c for a negative c).

Listing 1. Algorithm pseudocode for Extended Hill 
Climbing method.

 Set iterationsNumber = initialIterationsNumber / k.  
 Set bestValue = -Inf. 
 Set bestPoint = NULL. 
  
 While TRUE { 
 Set iterationsNumber = Round(iterationsNumber * k). 
 Set bestValuePackage = -Inf. 
 Set bestPointPackage = NULL.  
  
 // Current walks set (package) of size equal to it-
erationsNumber. 
 For j = 1 to iterationsNumber { 
 Draw starting point x from uniform distribution over 
 the parameters space. 
 Set bestValueWalk = optimizedFunction(x). 
 Set bestPointWalk = x. 
 Set step = initialStep.  
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 // Single walk. 
 While TRUE { 
 Set previousBestValueWalk = bestValueWalk. 
  
 // Checking neighbours. 
 For every parameter space dimension i { 
 Set neighbourUp = x + currentStep * unitVector_i. 
 Set currentFunctionValue = optimizedFunction(neigh-
bourUp).  
  
 If optimizedFunction(neighbourUp) > currentMaxValue 
and  
 neighbourUp is element of parameters space. { 
 Set bestValueWalk = currentFunctionValue. 
 Set bestPointWalk = neighbourUp. 
 Break for loop. 
 } 
  
 Set neighbourDown = x + currentStep * unitVector_i. 
 Set currentFunctionValue = optimizedFunction(neigh-
bourDown).  
  
 If currentFunctionValue > currentMaxValue and  
 neighbourDown is element of parameters space. { 
 Set bestValueWalk = currentFunctionValue. 
 Set bestPointWalk = neighbourUp. 
 Break for loop. 
 } 
 } 
  
 // Change stepsize if no better point found. 
 If bestValueWalk == previousBestValueWalk 
 Set step = RoundDown(step / k). 
  
 If step == 0 
 Stop walk by breaking current while loop. 
 } 
  
 // Update best value and point in package if needed. 
 If bestValueWalk > bestValuePackage { 
 Set bestValuePackage = bestValueWalk. 
 Set bestPointPackage = bestPointWalk. 
 } 
 }  
  
 // Stop algorithm if no improvement in the previous 
package. 
 If bestValuePackage > bestValue { 
 Set bestValue = bestValuePackage. 
 Set bestPoint = bestPointPackage 
 } else { 
 Break while loop and return bestPoint and bestValue. 
 } 
 }

3.4  Grid Method (GM)

The  second machine learning method, called the  Grid 
Method (GM) is designed to operate on a limited space 
of discrete parameters, called grids. The method is com-
posed of simple exhaustive searches, finding the  best 

points from the  parameters subgrids. The  subgrids 
with a decreasing interspace are considered in the con-
secutive steps of the  method. Firstly, the  subgrids of 
full range and the  relatively high interspace between 
parameters are considered and some of the  best feasi-
ble solutions are used as a starting point for new inde-
pendent procedures. Every starting point becomes 
the  centre of a new subgrid, with a lower interspace 
between parameters. After predefined number of itera-
tions, the interspace between parameters is minimal and 
then the  solution with the  biggest criterion among all 
subgrids is returned. This method is purely determin-
istic and need the initial subgrid of parameters’ space to 
reflect the properties of whole space, such that the best 
global solutions will be around the best solutions from 
the initial subgrid. Otherwise, the method cannot return 
satisfactory results. Therefore, the  high-value solution, 
surrounded by the  worse ones might not be found by 
this method.

The  search could be improved by setting different 
meta-parameters, such as the number of starting points 
or the  interspace between parameters in the  initial 
grid. There is a natural trade-off between the method’s 
accuracy and the computation time due to the fact that 
the  computation time was approximately proportional 
to the number of evaluations. Setting the meta-param-
eters allows to balance between method precision and 
time in an easy and effective way. Another big advan-
tage is the  deterministic nature of the  method. There 
is no uncertainty about the  method’s results or com-
putation time, which could be observed for random 
methods, such as the Extended Hill Climbing. Moreover, 
the computation time could be estimated before execu-
tion due to the predefined number of evaluated points. 
The method is easy to parallelize, as well as the previous 
one – the procedures for separated grids could be exe-
cuted at the same time on different CPUs. The discussed 
method is prepared for the  purpose of this paper  – it 
is not an extension of the  existing machine learning 
methods; however, it follows the basic idea, so it could 
be the method in use, following a similar approach.

Throughout the paper, the number of starting points 
is always equal to 6 and the  interspace between initial 
subgrid parameters is equal to the initial step of the pre-
vious method – 5. The  grid size is always 5x5x5x5, 
centered at the  best point from the  previous search 
procedure step. Interspace of a grid in the next step is 
2  times shorter than that in the previous one (rounded 
up if needed).
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Algorithm pseudocode
Algorithm is provided for parameter space mapped 

into {0,1, . . . , 𝑁𝑁}𝑘𝑘  for the  sake of simplicity. Therefore, 
parameterSpaceWidth denotes N and dim stands for 
the parameter space dimension k. Metaparameters: num-
berOfSubgrids, gridSize, firstInterspace, initialInterspace, 
minimumInterspace, k.

Listing 2. Algorithm pseudocode for Grid method.

Set bestValues = {-Inf, -Inf, ..., -Inf} as vector  
of size numberOfGrids. 
Set bestPoints = {NA, ..., NA} as list containing dim 
vectors 
of size numberOfSubgrids. 
 
// Check points from the initial grid. 
 
Set gridSize = parameterSpaceWidth / firstInterspace 
+ 1. 
  
For j1 = 0 to gridSize - 1 { 
 For j2 = 0 to gridSize - 1 { 
 ...  
 For jdim = 0 to gridSize - 1 { 
 // Check point from a current grid. 
 Set currentPoint = firstInterspace * 
 (j1 * unitVector_1 + j2 * unitVector_2 + ... + 
 jdim * unitVector_dim). 
  
 Set currentValue = optimizedFunction(currentPoint). 
  
 If currentValue > bestValues[numberOfSubgrids] and 
 currentPoint is element of parameters space { 
 
 // Overwrite the lowest value from bestPoints and 
sort. 
 Set bestValues[numberOfSubgrids] = currentValue. 
 Set bestPoints[numberOfSubgrids] = currentPoint. 
 
 Sort descending bestValues. 
 Permute bestPoints accordingly. 
 } 
 }  
 ...  
 } 
} 
 
// Check subgrids centered at the bestPoints. 
Set interspace = initialInterspace. 
While interspace >= minimumInterspace { 
 For i = 1 to numberOfSubgrids { 
 Set center = bestPoints[i]. 
 For j1 = -(gridSize - 1) / 2 to (gridSize - 1) / 2 { 
 For j2 = -(gridSize - 1) / 2 to (gridSize - 1) / 2 { 
 ...  
 For jdim = -(gridSize - 1) / 2 to (gridSize - 1) / 
2 { 
 // Check point from a current grid. 
 Set currentPoint = center + interspace * 
 (j1 * unitVector_1 + j2 * unitVector_2 + ... + 
 jdim * unitVector_dim). 
  
 Set currentValue = optimizedFunction(currentPoint). 

  
 If currentValue > bestValues[i] and 
 currentPoint is element of parameters space { 
 Set bestValues[i] = currentValue. 
 Set bestPoints[i] = currentPoint. 
 } 
 } 
 ...  
 } 
 } 
 } 
 
 Set interspace = RoundUp(interspace / k). 
} 
 
Return Max(bestValues) and corresponding point from 
bestPoints.

3.5  Differential Evolution Method (DEM)

The  Differential Evolution is the  optimization method 
inspired by the  biological phenomenon of evolution. 
The  considered machine learning method follows 
the approach of taking the random sample (population) 
from the solution space (Ψ), disturbing the parameters 
(mutation of the population characteristics) and creating 
a new sample from the most profitable strategies (repro-
duction). The steps are repeated – the new population 
is created, with the  disturbed characteristics similar to 
the  best ones from the  previous step. This approach 
is similar to the  rule of the Grid Method. Both methods 
repeatedly check all the  strategies from a specified 
sample and create the  next one, using the  information 
learned before.

The  R implementation of the  procedure JDEoptim 
from DEoptimR package of version 1.0–8 with default 
meta parameters (Conceicao, 2016) is used as a main 
component of the method. The implemented version of 
algorithm is consistent with jDE method from Brest et 
al. (2006). The function DEoptim from package DEoptim 
(Mullen et al., 2016) is implemented in Rcpp in a more effi-
cient way, and moreover, provides bigger elasticity than 
the  JDEoptim; therefore, we suggest to use it in practi-
cal applications. Nevertheless, in this paper, the method 
JDEoptim was used, because it was fully implemented in 
R like all other considered methods. Using faster func-
tion implemented in Rcpp would give this result unfair 
advantage over the  other ones and could significantly 
affect the conclusions.

The differential evolution operates on the continu-
ous spaces of real numbers, therefore, it is inadequate for 
the  selection of integer parameters. However, the  dis-
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crete space can be intrapolated on the  continuous one 
by several methods. The optimization criterion function 
OC: Ψ = {1, 5, ... , 100}4 → 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂:𝛹𝛹Ψ = {1,5, … ,100}4 → Rℝ  was extended to OC̃  operat-
ing on the continuous real space [0, 100]4 in the follow-
ing way: 

OC̃(𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3, 𝑥𝑥4) = 𝑂𝑂𝑂𝑂(5𝑚𝑚𝑚𝑚𝑚𝑚(⌊𝑥𝑥15 ⌋,1),5𝑚𝑚𝑚𝑚𝑚𝑚(⌊𝑥𝑥25 ⌋,1), . . . ,5𝑚𝑚𝑚𝑚𝑚𝑚(⌊𝑥𝑥45 ⌋),1) 	

		     𝑂𝑂𝑂𝑂(5𝑚𝑚𝑚𝑚𝑚𝑚(⌊𝑥𝑥15 ⌋,1),5𝑚𝑚𝑚𝑚𝑚𝑚(⌊𝑥𝑥25 ⌋,1), . . . ,5𝑚𝑚𝑚𝑚𝑚𝑚(⌊𝑥𝑥45 ⌋),1)              

The extended function OC̃  simply returns the value 
of OC for the rounded values of parameters with addi-
tional assumption that parameters equal to 0 are changed 
to 1.

3.6  The Exhaustive Search (ES)

The  strategies selected by different methods were 
analysed and compared with the  optimal strategy, 
maximizing the  optimization criterion in the  in-sam-
ple period. The  optimal strategy was found in every 
case by the Exhaustive Search (brute-force) algorithm 
checking all possible combinations of parameters in 
order to select one with the highest criterion value. Fol-
lowing this approach always leads to get the  highest 
possible criterion value, but it requires plenty of time. 
The main purpose of using machine learning methods 
instead of the Exhaustive Search was to get significantly 
lower computation time without the  loss of quality of 
results. Therefore, the  difference in computation time 
reflects the  value of information learned in previous 
steps for further search procedure efficiency. Moreover, 
the  Exhaustive Search will be treated as a benchmark 
due to its simplicity, intuitive character and widespread 
use.

4  Data description

The main goal of machine learning methods was to find 
the parameters’ vector ψ∈Ψ = {1, 5, ... , 100}4 (i.e. vector 
of four parameters, each from the set {1, 5, ... , 100}) in 
order to select the self-financing strategy maximizing 
OC within the framework of the assumptions.

Every considered portfolio was composed of two 
securities of the  same kind. The  first pair contained 
the futures contracts on two important and highly cor-

related market indexes – American S&P500 Index (SPX) 
and German Deutscher Aktienindex (DAX). The next con-
sidered pair was composed of two big American high-
tech companies stocks – Apple Inc. (AAPL) and Microsoft 
Corp. (MSFT). These companies are major representa-
tives of the IT sector and American economy, but there 
was a real difference, between their dynamics of growth. 
The  last considered assets were two commodities’ 
futures contracts – High-Grade Copper Futures (HG.F) and 
Crude Oil Brent Futures (CB.F).

The  machine learning methods searched for strat-
egy optimal in the in-sample period from the beginning 
of 1998 to the end of 2013. Strategies were validated on 
the  out-of-sample data from the  beginning of 2014 to 
the  end of 2017. All strategies operated on daily data, 
taking position each trading day. The length of in-sam-
ple period was big enough to make sure that the  dif-
ferent market trends were included for all-time series. 
On the other hand, the out-of-sample length allowed to 
properly validate strategies and assess overfitting level.

The  most rapid growth of value was observed for 
AAPL stock, whose price increased on average by around 
35% annually. The  disproportion between the  profita-
bility of AAPL and other assets did not diminish, after 
adjusting for risk and applying terms of IR measure. 
The  standard deviation of AAPL returns was higher 
than for any other asset, however, in a way dispropor-
tionately lower than the returns. Therefore, one can say 
that risk was fully compensated by enormously high 
returns. Additionally, AAPL had the  lowest maximum 
drawdown (43.80%) among all the  considered price 
series (around 60–70%).

The  returns of AAPL was still high, but noticea-
bly lower in the out-of-sample period, although the IR 
measure was higher than in the  in-sample period. 
The  returns of AAPL was lower than in the  earlier 
period but associated with much lower risk. Microsoft 
share price increased faster than the  other asset prices 
in the out-of-sample period. The IR was higher than for 
any time series in the out-of-sample. It is worth noting, 
that the commodities’ (HG.F and CB.F) return was nega-
tive in the out-of-sample period. The graphs of the prices 
normalized by the  initial value would be presented 
together with strategies’ equity lines in the further part 
of this paper.
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5  Efficiency tests for different 
methods

Methods described before were tested on the three pairs 
of assets by running whole optimization process on 
the  data from in-sample period. Extended Hill Climb-
ing and Differential Evolution Method were executed 
1000 times for every pair due to their random nature. 
The strategies with median optimization criterion were 
treated as final results for comparison purposes and 
were called median strategies. Lengths of moving aver-
ages for first asset are denoted by k1 and k2 and analo-
gously k1.2, k2.2 for the second one.

5.1  S&P500 Index (SPX) and Deutscher 
Aktienindex (DAX)

All statistics and graphs referring to the  methods’ 
performance on that pair of assets were denoted by 
the acronym SPXDAX.

5.2  In-sample methods efficiency

All machine learning methods had the  same selected 
median strategy, different than the  one resulted 
from Exhaustive Search procedure. Nevertheless, 
all the  methods used contrarian approach on SPX 
and momentum component operating on DAX. Both 
the  optimal strategies resulted from ES and median 
strategy of machine learning methods generated only 

Tab. 1: The descriptive statistics of the considered assets

In-sample Out-of-sample

SPX DAX AAPL MSFT HGF CBF SPX DAX AAPL MSFT HGF CBF

%ARC 3.92 4.79 35.22 6.32 9.41 12.14 9.67 8.07 22.68 25.70 -0.62 -11.01

%ASD 20.39 24.97 46.69 33.06 28.48 34.54 11.94 18.37 22.27 21.43 19.25 33.07

IR 0.19 0.19 0.75 0.19 0.33 0.35 0.81 0.44 1.02 1.2 -0.03 -0.33

%MDD 56.78 72.68 43.80 71.65 68.37 73.48 14.16 29.27 30.45 18.05 42.47 75.83

%ARC - annualized rate of return (%), %ASD - annualized standard deviation (%), %MDD - maximum drawdown of capital (%), IR - 
information ratio calculated as %ARC / %ASD, OC - optimization criterion calculated as 100 * (%ARC * %ARC) / (%ASD * %MDD), 
SPX - S&P500 Index, DAX - Deutscher Aktienindex, AAPL - Apple Inc. stock, MSFT - Microsoft Corp. stock, HGF - High Grade Copper 
Futures, CBF - Crude Oil Brent Futures. The statistics have been calculated for in-sample period from the beginning of 1998 to the end of 
2013 and for out-of-sample period from the beginning of 2013 to the end of 2017, on daily data.

Tab. 2: The median strategies parameters and statistics resulted 
from all the methods for SPXDAX

In-sample Out-of-sample

ES EHC GM DEM ES EHC GM DEM

k1 60.00 100.00 100.00 100.00 60.00 100.00 100.00 100.00

k2 45.00 35.00 35.00 35.00 45.00 35.00 35.00 35.00

k1.2 65.00 45.00 45.00 45.00 65.00 45.00 45.00 45.00

k2.2 75.00 85.00 85.00 85.00 75.00 85.00 85.00 85.00

%ARC 4.27 3.92 3.92 3.92 -0.03 -0.62 -0.62 -0.62

%ASD 5.17 4.63 4.63 4.63 4.02 3.74 3.74 3.74

IR 0.83 0.85 0.85 0.85 -0.01 -0.17 -0.17 -0.17

%MDD 4.53 4.30 4.30 4.30 7.20 6.34 6.34 6.34

OC 77.79 77.16 77.16 77.16 0.00 -1.62 -1.62 -1.62

%ARC - annualized rate of return (%), %ASD - annualized 
standard deviation (%), %MDD - maximum drawdown of 
capital (%), IR - information ratio calculated as %ARC / %ASD, 
OC - optimization criterion calculated as 100 * (%ARC * %ARC) / 
(%ASD * %MDD), k1, k2, k1.2, k2.2 - strategy parameters, width 
of the moving averages’ windows. The statistics of the equity lines 
have been calculated for the strategy working on daily frequency, 
investing 20% of capital in position on each asset with rebalancing 
every 5 trading days. Trading from the beginning of 1998 to 
the end of 2013 has been simulated, with the assumption of fee 
equal to 0.25% of the position value.
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moderate profits during the whole in-sample period. On 
the other hand, the strategy met the requirements of sta-
bility and safety. Strategies of that kind were preferred 
over the more profitable ones due to using low leverage 
and including two risk measures in the construction of 
the  optimization criterion. The  maximum drawdown 
was especially low, despite the  relatively long time 
horizon. The  resulting strategies never lost more than 
5% of the  available money during whole 16 years of 
the  in-sample period, comparing with more than 50% 
on the basis instruments (SPX and DAX indexes).

The  strategy components could hedge each other 
in order to reduce the  portfolio risk and obtain more 

smooth equity line (stable profits). Both strategies fol-
lowed two opposite approaches in trading on two similar 
assets. The strategy contained the contrarian part, oper-
ating on SPX and the momentum one trading on DAX. 
The Exhaustive Search reached the global maxima, but 
the total calculation time was equal to 609.37 minutes.

The empirical distributions of the reached criterion 
and computation time of 1000 independent EHC and 
respectively DEM executions are presented on Fig. 2 
and Fig. 3. Most of the independent procedures for both 
methods returned the  same strategy with the  second 
best optimization criterion. No selected solution had sig-
nificantly worse performance and considerable number 
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Fig. 1: The equity lines of the strategies selected by all the methods for SPXDAX - in-sample
SPX - S&P500 Index, DAX - Deutscher Aktienindex, ES, EHC, GD, DEM - equity line of the median strategy resulted from respec-
tively Exhaustive Search, Extended Hill Climbing, Grid Method and Differential Evolution Method. Prices of both assets have 
been normalized in order to have initial value equal to 1000. The equity line has been calculated for the strategy working on daily 
frequency, investing 20% of capital in position on each asset with rebalancing every 5 trading days. Trading from the beginning of 
1998 to the end of 2013 has been simulated, with the assumption of fee equal to 0.25% of the position value.
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Fig. 2: The histograms of the reached optimization criterion and the execution time of EHC for SPXDAX – in-sample
OC - optimization criterion calculated as 100 * (%ARC * %ARC) / (%ASD * %MDD). The optimization criterion have been calcu-
lated from the sample of 1000 independent algorithm executions. The strategies have been working on the daily frequency, invest-
ing 20% of capital in position on each asset with rebalancing every 5 trading days. Trading from the beginning of 1998 to the end of 
2013 has been simulated, with assumption of fee equal to 0.25% of the position value.
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of them reached the highest criterion as well. Therefore, 
the  results proved both high efficiency and stability 
of the  methods (Tab. 3). The  median of the  Extended 
Hill Climbing procedure computation time is equal to 
30.97  seconds, when the  Exhaustive Search took more 
than 10 hours. The  computation time improvement is 
indisputable. Due to the dynamic stopping rule, the exe-
cution time was highly varied across the sample. Some 
runs lasted around 11 seconds, when the  others took 
around 9 minutes. Nevertheless, the  observed low 
level of stability did not affect the time advantage over 
the Exhaustive Search, because all the procedures lasted 
incomparably less.

The Grid Method resulted in the second best strategy, 
exactly the  same as median strategy from the Extended 
Hill Climbing. The calculation time was longer than for 
the previous method. On the other hand, the execution 
lasted 128.04 seconds, which was still much less than for 
the Exhaustive Search. The method had some advantages 
over the  previous, machine learning method as well. 
The optimization criterion was similar, but there was no 
uncertainty either about results or time, while the EHC 
and DEM results was random.

Most of the  DEM executions selected exactly 
the same strategy, as two previous methods. The median 

execution time for DEM equalled to 31.15 seconds and 
the  time required to execute the  procedure had lower 
standard deviation than for EHC. The Differential Evolu-
tion Method gave strategies similar to the optimal ones 
but in relatively short and stable time.

5.2.1  Out-of-sample results

As expected, the  out-of-sample strategy performance 
was worse than the  in-sample period. The  strategies 
obtained by the  Exhaustive Search and all the  con-
sidered machine learning methods were ineffective in 
the out-of-sample period and resulted in return close to 
zero at the end of a time horizon.

Tab. 3: The summary of the reached optimization criterion and 
the execution time of methods for SPXDAX – in-sample

ES EHC GM DEM

OC Time 
[sec] OC Time 

[sec] OC Time 
[sec] OC Time 

[sec]

Minimum 77.79 35562.17 65.58 11.87 77.16 128.04 71.93 13.11

1st 
Quantile 77.79 35562.17 74.39 13.93 77.16 128.04 77.16 24.84

Median 77.79 35562.17 77.16 30.97 77.16 128.04 77.16 31.15

Mean 77.79 35562.17 75.94 43.1 77.16 128.04 77.34 42.73

2nd 
Quantile 77.79 35562.17 77.16 65.32 77.16 128.04 77.79 61.5

Max 77.79 35562.17 77.79 569.39 77.16 128.04 77.79 141.08

Standard 
deviation

0.00 0.00 2.61 48.77 0.00 0.00 0.36 24.06

OC - optimization criterion calculated as 100 * (%ARC * %ARC) / 
(%ASD * %MDD). The equity lines have been calculated for 
the strategy working on daily frequency, investing 20% of 
capital in position on each asset with rebalancing every 5 trading 
days. Trading from the beginning of 1998 to the end of 2013 has 
been simulated, with the assumption of fee equal to 0.25% of 
the position value.

0

200

400

600

72 74 76 78
Optimization Criterion OC

co
un

t

0

50

100

150

50 100 150
Computation time [sec]

co
un

t

0

200

400

600

72 74 76 78
Optimization Criterion OC

co
un

t

0

50

100

150

50 100 150
Computation time [sec]

co
un

t

Fig. 3: The histograms of the reached optimization criterion and 
the execution time of DEM for SPXDAX - in-sample

OC - optimization criterion calculated as 100 * (%ARC * 
%ARC) / (%ASD * %MDD). The optimization criterion have 
been calculated for the strategy working on daily frequency, 
investing 20% of the capital in position on each asset with rebal-
ancing every 5 trading days. Trading from the beginning of 1998 
to the end of 2013 has been simulated, with the assumption of 
fee equal to 0.25% of the position value.
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5.3  Apple Inc. (AAPL) and Microsoft 
Corp. stock (MSFT)

The strategy was optimized for the stocks of high-tech 
companies Apple Inc. and Microsoft Corp. The  dynamic 
growth of prices was a great trading opportunity, there-
fore the  strategies were able to generate high profit in 
both periods. Similar to the previous pair, the high corre-
lation between prices was observed both in the in-sam-
ple and in the out-of-sample periods, what gave the pos-
sibility to design strategies with hedging elements and 
obtain results associated with a lower risk. All the statis-
tics and graphs referring to that case were denoted by 
AAPL MSFT.

5.3.1  In-sample methods efficiency

All the considered methods selected exactly the same 
strategy. Simple moving averages crossover approach 
was highly effective due to the enormously high growth 
of the Apple stock. That strategy had a large return in 
the  in-sample period, 17.79% annually, and low risk 
measures as well. The  annualized standard deviation 
of returns was equal to 11.13% when the  maximum 
drawdown was lower than 8%. The  return generated 
by the strategy was high but incomparably lower than 
the percentage growth of AAPL. Nevertheless, buy-and-
hold strategy following the  specified rebalancing rule 
with leverage at level 40% generated a return of 13.59% 
with annualized standard deviation equal to 9.24% 
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Fig. 4: The equity lines of the strategies selected by the all the methods for SPXDAX – out-of-sample
ES, EHC, GD, DEM - equity line of the median strategy resulted from respectively Exhaustive Search, Extended Hill Climbing, Grid 
Method and Differential Evolution Method. Prices of both assets have been normalized in order to have initial value equal to 1000. 
The equity line has been calculated for the strategy working on daily frequency, investing 20% of capital in position on each asset 
with rebalancing every 5 trading days. Trading from the beginning of 2014 to the end of 2017 has been simulated, with the assump-
tion of fee equal to 0.25% of the position value.

Tab. 4: The median strategy parameters and statistics resulted 
from all the methods for AAPLMSFT

In-sample Out-of-sample

ES EHC GM DEM ES EHC GM DEM

k1 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00

k2 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00

k1.2 75.00 75.00 75.00 75.00 75.00 75.00 75.00 75.00

k2.2 40.00 40.00 40.00 40.00 40.00 40.00 40.00 40.00

%ARC 17.79 17.79 17.79 17.79 1.37 1.37 1.37 1.37

%ASD 11.13 11.13 11.13 11.13 5.68 5.68 5.68 5.68

IR 1.60 1.60 1.60 1.60 0.24 0.24 0.24 0.24

%MDD 7.71 7.71 7.71 7.71 9.54 9.54 9.54 9.54

OC 368.83 368.83 368.83 368.83 3.49 3.49 3.49 3.49

%ARC - annualized rate of return (%), %ASD - annualized 
standard deviation (%), %MDD - maximum drawdown of capital 
(%), IR - information ratio calculated as %ARC / %ASD, OC - 
optimization criterion calculated as 100 * (%ARC * %ARC) / 
(%ASD * %MDD), k1, k2, k1.2, k2.2 - strategy parameters, width 
of the moving averages’ windows. The statistics of the equity line 
have been calculated for the strategy working on daily frequency, 
investing 20% of capital in position on each asset with rebalancing 
every 5 trading days. Trading from the beginning of 1998 to 
the end of 2013 has been simulated, with the assumption of fee 
equal to 0.25% of the position value.
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and the  maximum drawdown of 9.71%. Therefore, 
the selected strategy is both highly profitable and asso-
ciated with relatively low risk as well. The Exhaustive 
Search lasted 547.02 minutes in that case.

The Extended Hill Climbing method returned exactly 
the  same results as the  Exhaustive Search, but in sig-
nificantly lower time. There were a number of similar-
ities between the  method performance in the  current 
and the  previous case. The  Extended Hill Climbing 
had the high stability of results, but uncertain compu-
tation time. Despite the  low time stability, the method 
proved to be far more efficient than the  Exhaustive 
Search. The  median of execution time was equal to 
18.18 seconds (Tab. 5).

The Grid Method resulted in exactly the same strategy 
as both previous methods. The  computation time was 
equal to 150.66 seconds.

The Differential Evolution reached the global maxima 
in almost every attempt. Moreover, the median of the exe-
cution time was higher (22.19) than for the Extended Hill 
Climbing, but the execution time had a lower standard 
deviation. Therefore, the  differential evolution proved 
to be an efficient and a stable method in that case. 
The median strategy was the optimal one, the same as 
for all other considered methods.
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Fig. 5: The equity line of the strategy selected by all the methods for AAPLMSFT – in-sample
AAPL - Apple Inc. stock, MSFT - Microsoft Corp. stock, ES, EHC, GD, DEM - equity line of the median strategy resulted from 
respectively Exhaustive Search, Extended Hill Climbing, Grid Method and Differential Evolution Method. Prices of both assets 
have been normalized in order to have initial value equal to 1000. The equity line has been calculated for the strategy working on 
daily frequency, investing 20% of capital in position on each asset with rebalancing every 5 trading days. Trading from the begin-
ning of 1998 to the end of 2013 has been simulated, with the assumption of fee equal to 0.25% of the position value.
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Fig. 6: The histograms of the reached optimization criterion and the execution time of EHC for AAPLMSFT – in-sample
OC - optimization criterion calculated as 100 * (%ARC * %ARC) / (%ASD * %MDD). The optimization criterion has been calculated 
from the sample of 1000 independent algorithm executions. The strategies have been working on the daily frequency, investing 20% 
of capital in position on each asset with rebalancing every 5 trading days. Trading from the beginning of 1998 to the end of 2013 has 
been simulated, with the assumption of fee equal to 0.25% of the position value.
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5.3.2  The out-of-sample results

All the  considered machine learning methods selected 
the  same strategy as the  exhaustive search procedure. 
That strategy was optimal on the  in-sample period in 
terms of optimization criterion, resulted in annualized 
returns at the  level of 17.79% and relatively low both 
annualized standard deviation (%ASD) and maximum 
drawdown (%MDD). Performance of the selected strat-
egy on the out-of-sample period was substantially worse 
than on the  in-sample period. Strategy had more than 
10 times lower %ARC, similar %MDD and a little lower 
%ASD (Tab. 4). A big difference between performance 

on the consecutive periods suggested high level of strat-
egy overfitting, however, strategy generated positive 
profits in the out-of-sample period.

5.4  High Grade Copper Futures (HG.F) 
and Crude Oil Brent Futures (CB.F)

The  last considered pair of assets was composed of 
the  two commodities’ futures contracts. The  problem 
of finding the  optimal strategy was harder, than for 
the  previous ones. The  difference between commodi-
ties’ behaviour in both periods and a weaker statistical 
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Fig. 7: The histograms of the reached optimization criterion and the execution time of DEM for AAPLMSFT – in-sample
OC - optimization criterion calculated as 100 * (%ARC * %ARC) / (%ASD * %MDD). The optimization criterion have been calcu-
lated from the sample of 1000 independent algorithm executions. The strategies have been working on the daily frequency, invest-
ing 20% of capital in position on each asset with rebalancing every 5 trading days. Trading from the beginning of 1998 to the end of 
2013 has been simulated, with the assumption of fee equal to 0.25% of the position value.

Tab. 5: The summary of the reached optimization criterion and the execution time of methods for AAPLMSFT – in-sample

ES EHC GM DEM

OC Time [sec] OC Time [sec] OC Time [sec] OC Time [sec]

Minimum 368.83 32821.18 301.34 11.96 368.83 150.66 274.97 11.82

1st Quantile 368.83 32821.18 368.83 14 368.83 150.66 368.83 19.67

Median 368.83 32821.18 368.83 18.18 368.83 150.66 368.83 22.19

Mean 368.83 32821.18 367.16 27.4 368.83 150.66 368.55 22.71

2nd Quantile 368.83 32821.18 368.83 32.97 368.83 150.66 368.83 25.27

Max 368.83 32821.18 368.83 174.06 368.83 150.66 368.83 45.8

Standard deviation 0.00 0.00 5.51 18.71 0.00 0.00 5.14 4.52

OC - optimization criterion calculated as 100 * (%ARC * %ARC) / (%ASD * %MDD). The optimization criterion has been calculated 
from the sample of 1000 independent algorithm executions. The strategies have been working on the daily frequency, investing 20% of 
capital in position on each asset with rebalancing every 5 trading days. Trading from the beginning of 1998 to the end of 2013 has been 
simulated, with the assumption of fee equal to 0.25% of the position value.
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relationship between them were the  main reasons for 
the difficulties. The statistics and graphs from that case 
were always denoted by HGFCBF.

5.4.1  In-sample methods efficiency

The  Exhaustive Search selected the  strategy with an 
annualized return equal to 8.18%, when all the machine 
learning methods selected median strategy with returns 
at level of 9.53%. Nevertheless, that strategy was 
optimal in terms of optimization criterion, depending on 
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Fig. 8: The equity lines of the strategies selected by all the methods for AAPLMSFT – out-of-sample
AAPL - Apple Inc. stock, MSFT - Microsoft Corp. stock, ES, EHC, GD, DEM - equity line of the median strategy resulted from 
respectively Exhaustive Search, Extended Hill Climbing, Grid Method and Differential Evolution Method. Prices of both assets 
have been normalized in order to have initial value equal to 1000. The equity line has been calculated for the strategy working on 
daily frequency, investing 20% of capital in position on each asset with rebalancing every 5 trading days. Trading from the begin-
ning of 2014 to the end of 2017 has been simulated, with the assumption of fee equal to 0.25% of the position value.

Tab. 6: The median strategies parameters and statistics resulted from all the methods for HGFCBF

In-sample Out-of-sample

ES EHC GM DEM ES EHC GM DEM

k1 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00

k2 75.00 75.00 75.00 75.00 75.00 75.00 75.00 75.00

k1.2 50.00 30.00 30.00 30.00 50.00 30.00 30.00 30.00

k2.2 25.00 95.00 95.00 95.00 25.00 95.00 95.00 95.00

%ARC 8.18 9.53 9.53 9.53 -1.59 6.60 6.60 7.38

%ASD 8.16 9.83 9.83 9.83 7.09 8.17 8.17 8.07

IR 1.00 0.97 0.97 0.97 -0.22 0.81 0.81 0.91

%MDD 7.51 9.52 9.52 9.52 15.86 12.16 12.16 12.16

OC 109.11 97.04 97.04 97.04 -2.24 43.81 43.81 55.49

OC - optimization criterion calculated as 100 * (%ARC * %ARC) / (%ASD * %MDD). The empirical statistics have been calculated 
from the sample of 1000 independent algorithm executions. The strategies have been working on the daily frequency, investing 20% of 
capital in position on each asset with rebalancing every 5 trading days. Trading from the beginning of 1998 to the end of 2013 has been 
simulated, with the assumption of fee equal to 0.25% of the position value.
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the  returns and risk measures as well. The Exhaustive 
Search process took 703.226 minutes.

The conclusions from computing 1000 procedures of 
EHC were the  same as for the  previous cases (Tab.  7). 
The reached optimization criterion was rather stable, in 
contrast to an unstable computation time. Once again, 
all the  learning procedures took a far less time than 
the  Exhaustive Search (median of execution time was 
equalled 33.07 seconds).

FThe GM method returned the median strategy of 
EHC and its computation time lasted 113.752 seconds. 
The conclusions were consistent with those discussed in 

the previous cases. The method obtained good results in 
the fixed time, when the Extended Hill Climbing optimi-
zation gave similar results in shorter, but more random 
time. The  Grid Method resulted in a strategy near to 
optimal with a reasonable time of execution.

The  median of DEM criteria was the  same as for 
the  Extended Hill Climbing. The  computation time of 
the  Differential Evolution had the  higher stability than 
EHC and the  lowest median value among all methods 
(23.08 seconds).
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Fig. 9: The equity lines of the strategy selected by all the methods for HGFCBF – in-sample
HGF - High Grade Copper Futures, CBF - Crude Oil Brent Futures, ES, EHC, GD, DEM - equity line of the median strategy resulted 
from respectively Exhaustive Search, Extended Hill Climbing, Grid Method and Differential Evolution Method. Prices of the both 
assets have been normalized in order to have initial value equal to 1000. The equity line has been calculated for the strategy 
working on daily frequency, investing 20% of capital in position on each asset with rebalancing every 5 trading days. Trading from 
the beginning of 1998 to the end of 2013 has been simulated, with the assumption of fee equal to 0.25% of the position value.
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Fig. 10: The histograms of the reached optimization criterion and the execution time of EHC for HGFCBF – in-sample
OC - optimization criterion calculated as 100 * (%ARC * %ARC) / (%ASD * %MDD). The optimization criterion has been calculated 
from the sample of 1000 independent algorithm executions. The strategies have been working on the daily frequency, investing 20% 
of capital in position on each asset with rebalancing every 5 trading days. Trading from the beginning of 1998 to the end of 2013 has 
been simulated, with the assumption of fee equal to 0.25% of the position value.
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5.4.2  The out-of-sample results

All the  considered machine learning methods finally 
selected the  same strategy, which was slightly worse 
than the optimal one in the in-sample period but signif-
icantly better in the out-of-sample period. The annual-
ized returns were about 6.60% with reasonable standard 

deviation and maximum drawdown. It is worth noticing 
that the strategy with the highest optimization criterion 
was omitted by all machine learning methods, proba-
bly because of the low stability of criterion around that 
point. The parameters’ vector was probably surrounded 
by the low-value ones, and therefore, machine learning 
methods could not find it. In consequence, the method 

Tab. 7: The summary of the reached optimization criterion and the execution time of the methods for HGFCBF – in-sample

ES EHC GM DEM

OC Time [sec] OC Time [sec] OC Time [sec] OC Time [sec]

Minimum 109.11 42193.57 77.29 12.29 97.04 113.75 97.04 9,76

1st Quantile 109.11 42193.57 93.62 14.73 97.04 113.75 97.04 19.92

Median 109.11 42193.57 97.04 33.09 97.04 113.75 97.04 23.08

Mean 109.11 42193.57 97.82 42.69 97.04 113.75 99.01 27.34

2nd Quantile 109.11 42193.57 109.11 36.85 97.04 113.75 97.04 29.15

Max 109.11 42193.57 109.11 622.17 97.04 113.75 109.11 110.93

Standard deviation 0.00 0.00 8.59 51.28 0.00 0.00 4.46 12.5

OC - optimization criterion calculated as 100 * (%ARC * %ARC) / (%ASD * %MDD). The optimization criterion has been calculated 
from the sample of 1000 independent algorithm executions. The strategies have been working on the daily frequency, investing 20% of 
capital in position on each asset with rebalancing every 5 trading days. Trading from the beginning of 1998 to the end of 2013 has been 
simulated, with the assumption of fee equal to 0.25% of the position value.
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Fig. 11: The histograms of the reached optimization criterion and the execution time of DEM for HGFCBF – in-sample
OC - optimization criterion calculated as 100 * (%ARC * %ARC) / (%ASD * %MDD). The optimization criterion has been calculated 
from the sample of 1000 independent algorithm executions. The strategies have been working on the daily frequency, investing 20% 
of capital in position on each asset with rebalancing every 5 trading days. Trading from the beginning of 1998 to the end of 2013 has 
been simulated, with the assumption of fee equal to 0.25% of the position value.
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selected the point from the more stable neighbourhood, 
what resulted in better performance in the out-of-sam-
ple period, what showed a potential of machine learning 
in reducing overfitting risk.

5.5  The comparison of tested methods 
with the Exhaustive Search

Throughout the paper, three machine learning optimi-
zation methods, adjusted to the  problem specificity, 
were discussed. The  performance of each method was 
tested by solving three problems of selection of trading 
strategy parameters on the period from the beginning of 
1998 to the end of 2017. The machine learning algorithms 
solved the  problem in significantly shorter time than 
the Exhaustive Search procedure with no significant dif-
ference in the results’ quality.

As noted before, the  machine learning methods 
gave results similar to the  optimal ones obtained by 
the Exhaustive Search procedure. The critical difference 
was in the  computation time. Checking all the  possi-
ble parameters required plenty of time. It lasted a few 
hours, whereas the  machine learning methods pro-
duced the comparable results in a fraction of a minute. 
The  advantage in time efficiency would be critical for 

complex problems, for instance, considering a larger 
parameter space. The  relative time difference was sig-
nificant, for instance, DEM took over 1650 times less 
time than the full exhaustive procedure in the SPXDAX 
and AAPLMSFT cases. Assuming the same proportion, 
the  DEM optimization, requiring less than one hour 
could replace the  ES lasting two months. The  results 
obtained in the paper suggested that machine learning 
methods introduced before could be an effective replace-
ment for the Exhaustive Search, reducing the computa-
tion time without affecting the quality of results (Tab. 8 
and Tab. 9).

The  first box plot (Fig. 13) presents the  optimiza-
tion criterion across the  samples. There are almost no 
significant differences between the results of the tested 
methods. The second box plot (Fig. 14) presents the com-
putation time across the  samples. The  GM had sub-
stantially higher median time, compared to the  other 
machine learning methods, but without uncertainty. 
The time required for DEM execution was relatively low 
and stable, especially compared with EHC, which had 
lower time stability, which was illustrated on Fig. 14 by 
the box size and plenty of outliers.
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Fig. 12: The equity lines of the strategies selected by the different methods for HGFCBF – out-of-sample
SPX - S&P500 Index, DAX - Deutscher Aktienindex, ES, EHC, GD, DEM - equity line of the median strategy resulted from respec-
tively Exhaustive Search, Extended Hill Climbing, Grid Method and Differential Evolution Method. Prices of the both assets have 
been normalized in order to have initial value equal to 1000. The equity line has been calculated for the strategy working on daily 
frequency, investing 20% of capital in position on each asset with rebalancing every 5 trading days. Trading from the beginning of 
2014 to the end of 2017 has been simulated, with the assumption of fee equal to 0.25% of the position value.
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Tab. 8: Mean and median optimization criterion reached by the different methods, referred to the ES method in percent – in-sample

ES Grid EHC median DEM median EHC mean DEM mean

SPXDAX 100 99.19 99.19 99.19 97.62 99.42

AAPLMSFT 100 100.00 100.00 100.00 99.55 99.92

HGFCBF 100 88.94 88.94 88.94 89.65 90.74

SPXDAX - case of trading on S&P500 Index and Deutscher Aktienindex, AAPLMSFT - case of trading on Apple Inc. and Microsoft Corp. 
stocks, HGFCBF - case of trading on High-Grade Copper and Crude Oil futures. ES - the Exhaustive Search, EHC - the Extended Hill 
Climbing, DEM - the Differential Evolution. The simulations has been performed for the strategy working on daily frequency, investing 
20% of capital in position on each asset with rebalancing every 5 trading days. Trading from the beginning of 1998 to the end of 2013 has 
been simulated, with the assumption of fee equal to 0.25% of the position value.

Tab. 9: Mean and median computation time of the methods, referred to the ES method in percent

ES Grid EHC median DEM median EHC mean DEM mean

SPXDAX 100 0.35 0.08 0.09 0.12 0.12

AAPLMSFT 100 0.46 0.06 0.07 0.08 0.07

HGFCBF 100 0.27 0.08 0.05 0.10 0.06

SPXDAX - case of trading on S&P500 Index and Deutscher Aktienindex, AAPLMSFT - case of trading on Apple Inc. and Microsoft Corp. 
stocks, HGFCBF - case of trading on High-Grade Copper and Crude Oil futures. ES - the Exhaustive Search, EHC - the Extended Hill 
Climbing, DEM - the Differential Evolution. The simulations has been performed for the strategy working on daily frequency, investing 
20% of capital in position on each asset with rebalancing every 5 trading days. Trading from the beginning of 1998 to the end of 2013 has 
been simulated, with the assumption of fee equal to 0.25% of the position value.
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Fig. 13: The boxplot of the optimization criterion of strategies selected by the machine learning methods, as a percentage of 
the global maxima found by the Exhaustive Search

The samples were denoted by the algorithm acronym and the number of trading case, so 1, 2 and 3 stands for respectively SPXDAX, 
AAPLMSFT and HGFCBF. The box plots present the empirical distribution quartiles and highlight the outliers. Half of the obser-
vations are inside the corresponding box, when the line inside marks the median. The observation was considered as an outlier 
and marked by a circle if the distance from both first and third quartile (from the nearest side of the box) was higher than 1.5 inter-
quartile range. The range of observations, without outliers was marked by the whiskers. That type of box plot was often called 
the Turkey Box Plot. It was worth to notice that the box plots of the Grid Method results were just a line because the results of that 
method were deterministic.
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6  Conclusions

Three machine learning methods (EHC, GM and DEM) 
were implemented and tested on simple moving aver-
ages’ crossover strategy optimization problem. Machine 
learning methods were a heuristic searches, based on 
simple algorithms, commonly used for similar prob-
lems. The  methods were adjusted to the  considered 
problem specificity, such as discreteness of parameters 
or low regularity of the solution space.

Machine learning methods were compared based 
on the value of optimization criterion, including annual-
ized rate of return from strategy and two risk measures – 
the  annualized standard deviation and the  maximum 
drawdown. All the statistics were calculated for the sim-
ulated trading on the period from the beginning of 1998 
to the end of 2013. The optimization criterion calculated 
for the strategies and the computation time, required to 
proceed the whole search process, were compared with 
the  Exhaustive Search. The  considered strategies were 
traded on the specified pairs of assets and were tested 
separately on SPX and DAX indexes futures, AAPL and 
MSFT stocks, and finally, on the pair composed of two 
commodity futures – HG.F and CB.F.

The strategies were compared, in terms of the opti-
mization criterion, based on the  annualized returns 
and including the  risk metrics, such as the annualized 
standard deviation of returns and the maximum draw-
down of the equity line. Applying such an approach in 

the  optimization process led to the  selection of more 
stable strategies. Using maximum drawdown compo-
nent eliminated the  strategies generating all profits in 
one short period of time. That approach significantly 
reduced the risk of overfitting, caused by the adjustment 
strategy to a few past extreme market situations.

The  first method, called the  Extended Hill Climbing 
was composed of the  independent local search walks, 
starting in the  randomly drawn points with specified 
stopping rule, based on the  level of optimization crite-
rion improvement in the  previous steps. That method 
generated stable results, which means that the strategies 
returned by the different program executions should be 
similar to each other. The method produced results com-
parable to the optimal one in relatively short time, but 
the stability of the execution time was low. On average, 
the  method was quick and efficient, but the  time of 
the whole process was varied.

The  second implemented ML method was purely 
deterministic algorithm, called the Grid Method. The main 
idea of the  search was to use denser and denser sub-
grids, centred at the points with high optimization cri-
terion value. The method returned the strategy param-
eters, with optimization criterion similar to the optimal 
one with time a few times longer than two other ML 
methods, but still a few times shorter than the  full 
exhaustive procedure. The big advantage of that method 
is the stable computation time and results, which came 
from its deterministic nature. This property of the opti-
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Fig. 14: The boxplot of machine learnings methods’ computation time empirical distribution
The samples were denoted by the algorithm acronym and the number of trading case, so 1, 2 and 3 stands for respectively SPXDAX, 
AAPLMSFT and HGFCBF. The box plots presents the empirical distribution quartiles and highlight the outliers. A half of the obser-
vations are inside the corresponding box, when the line inside marks the median. The observation was considered as an outlier 
and marked by a circle if the distance from both first and third quartile (from the nearest side of the box) was higher than 1.5 inter-
quartile range. The range of observations, without the outliers was marked by the whiskers. That type of box plot was often called 
the Turkey Box Plot. It was worth to notice that the box plots of Grid Method results were just a line because the results of that 
method were deterministic.
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mization procedure could be appreciated especially for 
usage in more complex, automatic systems.

The  last method, called the Differential Evolution, is 
in fact one of the  most popular heuristic algorithm to 
solve irregular continuously parameterized problems, 
adjusted to the  specificity of integer parameter spaces. 
The  adjustment was based on the  transformation of 
the  discrete solution space into the  continuous one, in 
a way preserving the problem specificity.

The  performance of strategies in the  in-sample 
period was better than in the out-of-sample. Despite 
the  main goal was to introduce and compare optimi-
zation methods, it is worth to point out the  difference 
between in-sample and out-of-sample strategies’ accu-
racy. The  strategies optimized by different methods 
in the  in-sample periods bear losses in the  out-of-
sample period for two out of three cases (SPXDAX 
and AAPLMSFT). The  unsatisfactory results during 
the  second period led us to the  conclusion, that 
the  selected strategies were not supposed to generate 
profit in the  future. The  considered models had rel-
atively few parameters, but it was enough to produce 
an overfitted strategy, too well-adjusted to the training 
data, and in consequence, ineffective on the test set.

Slightly different situation was in the  case of 
out-of-sample results for commodity futures trading 
(HG.F CB.F). In that case, all the  tested machine learn-
ing methods omitted the strategy with the higher opti-
mization criterion in the  in-sample period, probably 
because of the  weak performance of neighbouring 
strategies. In consequence, the  strategy selected by all 
the methods (in fact strategy with median optimization 
criterion across the sample) performed well in the out-
of-sample period, generating profits, while the one with 
the highest optimization criterion was bearing losses. It 
seems to confirm the basic intuition – the model avoided 
overfitting to the training dataset, which caused worse 
performance there, but also gave a chance to get better 
results in the  future. Selected simple moving averages 
crossover strategies were generally not profitable on 
the  price time series from outside the  training set, but 
there was a significant premise; the  machine learning 
methods developed in this paper, could be used to opti-
mize trading systems, based on another logic and signif-
icantly improve its computation time. The optimization 
time is crucial, because the  shorter the  time, the  faster 
the results of the optimization are available for a super-
visor or the wider space of parameters and more sophis-
ticated systems can be fitted in an efficient way.

To sum up, the presented results seems to be con-
sistent with the main hypothesis. The machine learning 
methods required much less time than the  Exhaustive 
Search and produced similar results in the  considered 
cases. In consequence, the  main hypothesis was not 
rejected. The  machine learning methods reached only 
slightly worse in-sample optimization criterion but in 
a significantly lower execution time. The  additional 
research question, that the  machine learning methods 
leads to lower overfitting risk, could not be answered 
based on the  results presented in this paper. In two 
scenarios, the machine learning methods selected very 
similar strategies to the  optimal one. Nevertheless, 
the methods selected worse strategies in the  in-sample 
period in the last case; the final strategy generated profit 
in the  out-of-sample period, while the  one obtained 
by the  ES resulted in the  loss of the  invested capital. 
The property of the overfitting reduction was observed 
only in one case, so it cannot lead to certain conclusions.
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