PL EN


2017 | 20 | 2 | 53-71
Article title

Spectral Analysis Of Business Cycles In The Visegrad Group Countries

Authors
Content
Title variants
Analiza spektralna cykli koniunkturalnych krajów Grupy Wyszechrackiej
Languages of publication
EN
Abstracts
EN
This paper examines the business cycle properties of Visegrad group countries. The main objective is to identify business cycles in these countries and to study the relationships between them. The author applies a modification of the Fourier analysis to estimate cycle amplitudes and frequencies. This allows for a more precise estimation of cycle characteristics than the traditional approach. The cross-spectral analysis of GDP cyclical components for the Czech Republic, Hungary, Poland and Slovakia makes it possible to assess the degree of business cycle synchronization between the countries.
PL
W artykule zbadano właściwości cykli koniunkturalnych w krajach Grupy Wyszehradzkiej. Głównym celem jest identyfikacja cykli koniunkturalnych w tych państwach i analiza powiązań pomiędzy nimi. Autor wykorzystuje modyfikację transformaty Fouriera do estymacji amplitud i częstotliwości cykli. Pozwala ona na precyzyjniejsze oszacowanie charakterystyk cykli niż w tradycyjnym podejściu. Analiza cross-spektralna komponentów cyklicznych PKB dla Czech, Węgier, Polski i Słowacji umożliwiła ocenę stopnia synchronizacji cykli koniunkturalnych w tych krajach.
Year
Volume
20
Issue
2
Pages
53-71
Physical description
Dates
published
2017-06-30
Contributors
  • Maria Curie-Skłodowska University in Lublin, Faculty of Economics, Department of Statistics and Econometrics
References
  • Aguiar-Conraria L., Soares M.J. (2011), Business Cycle Synchronization and the Euro: a Wavelet Analysis, ‘Journal of Macroeconomics’, Vol. 33, 477–489.
  • Artis M., Krolzig H.M., Toro J. (2004a), The European Business Cycle, ‘Oxford Economic Papers’, 56, 1–44.
  • Artis M.J., Marcellino M., Proietti T. (2004b), Characterizing the business cycle for accession countries, CEPR Discussion Papers 4457.
  • Backus D.K., Kehoe P.J., Kydland F.E. (1992), International Real Business Cycles, ‘Journal of Political Economy’, Vol. 100, No. 4, 745–775.
  • Bartlett M.S. (1950), Periodogram Analysis and Continuous Spectra, ‘Biometrika’, Vol. 37, No. 1–2, 1–16.
  • Baxter M., King R.G. (1995), Measuring Business Cycles: Approximate Band-Pass Filters for Economic Time Series, Working Paper No. 5022, National Bureau of Economic Research, Cambridge.
  • Beveridge S., Nelson C.R. (1981), A New Approach to Decomposition of Economic Time Series into Permanent and Transitory Components with Particular Attention to Measurement of the ‘Business Cycle’, ‘Journal of Monetary Economics’, 7, 151–174.
  • Burns A.F., Mitchell W.C. (1946), Measuring Business Cycles, N.Y.: National Bureau of Economic Research, New York.
  • Camacho M., Perez-Quiros G., Saiz L. (2008), Do European business cycles look like one?, ‘Journal of Economic Dynamics and Control’, Vol. 32, No. 7, 2165–2190.
  • Campbell J.Y., Mankiw N.G. (1987), Permanent and Transitory Components in Macroeconomic Fluctuations, ‘American Economic Review’ (Papers and Proceedings), 77, 111–117.
  • Chatfield C. (1996), The Analysis of Time Series: An Introduction, Chapman & Hall, London.
  • Christiano L.J., Fitzgerald T.J. (1999), The Band Pass Filter, Working Paper No. 9906, Federal Reserve Bank of Cleveland.
  • Clark P.K. (1987), The Cyclical Component of U.S. Economic Activity, ‘The Quaterly Journal of Economics’, Vol. 102, 797–814.
  • Crowley P., Lee J. (2005), Decomposing the Co-movement of the Business Cycle: A Time-Frequency Analysis of Growth Cycles in the Euro Area, Bank of Finland discussion papers 12/2005.
  • Darvas Z., Szapary G. (2008), Business Cycle Synchronization in the Enlarged EU, ‘Open Economies Review’, Vol. 19, No. 1, 1–19.
  • Fidrmuc J., Korhonen I. (2006), Meta-analysis of the Business Cycle Correlation Between the Euro Area and the CEECs, ‘Journal of Comparative Economics’, Vol. 34, No. 3, 518–537.
  • Forni M., Hallin M., Lippi M., Reichlin L. (2000), The Generalized Dynamic-factor Model: Identification and Estimation, ‘The Review of Economics and Statistics’, Vol. 82, No. 4, 540–554.
  • Hamilton J.D. (1994), Time Series Analysis, Princeton University Press.
  • Hanus L., Vacha L. (2015), Business Cycle Synchronization of the Visegrad Four and the European Union, IES Working Paper: 19/2015.
  • Harding D., Pagan A. (2006), Synchronization of Cycles, ‘Journal of Econometrics’, Vol. 132, No. 1, 59–79.
  • Harvey A.C. (1985), Trends and Cycles in Macroeconomic Time Series, ‘Journal of Business and Economic Statistics’, Vol. 3, 216–227.
  • Harvey A.C. (1989), Forecasting, Structural Time Series Models and the Kalman Filter, Cambridge University Press, Cambridge, New York and Melbourne.
  • Harvey A.C. (2000), Trends Analysis, University of Cambridge, Faculty of Economics and Politics.
  • Hodrick R., Prescott E. (1980), Post-War U.S. Business Cycles: An Empirical Investigation, Working paper, Carnegie Mellon University.
  • Hodrick R.J., Prescott E.C. (1997), Postwar U.S. Business Cycles: An Empirical Investigation, ‘Journal of Money Credit and Banking’, Vol. 29, No. 1, 1–16.
  • Inotai A., Sass M. (1994), Economic Integration of Visegrad Countries. Facts and Scenarios, ‘Eastern European Economics’, Vol. 32, No. 6, 6–23.
  • Kaposzta J., Nagy H. (2015), Status Report about the Progress of the Visegrad Countries in Relation to Europe 2020 Targets, ‘European Spatial Research and Policy’, Vol. 22, No. 1, 81–99.
  • Kydland F., Prescott C. (1990), Business Cycles: Real Facts and A Monetary Myth, Federal Reserve Bank of Minneapolis, Quarterly Review (Spring), 3–18.
  • Lee J. (2012), Measuring Business Cycle Comovements in Europe: Evidence from a Dynamic Factor Model with Time-varying Parameters, ‘Economics Letters’, Vol. 115, No. 3, 438–440.
  • Lucas R.E. (1977), Understanding Business Cycles, [in:] Brunner K., Meltzer A. H. (eds.), Stabilization of the Domestic and International Economy, Carnegie-Rochester Conference Series on Public Policy 5, Amsterdam: North Holland, 7–29.
  • Nelson C.R., Plosser C.I. (1982), Trends and Random Walks in Macroeconomic Time Series: Some Evidence and Implications, ‘Journal of Monetary Economics’, 10, 139–162.
  • Parzen E. (1961), Mathematical considerations in the estimation of spectra: Comments on the discussion of Messers, Tukey, and Goodman, ‘echnometrics’, 3, 167–190; 232–234.
  • Priestley M.B. (1981), Spectral Analysis and Time Series, Vols 1 and 2, Academic Press, London.
  • Stock J., Watson M. (2005), Understanding Changes in International Business Cycle, ‘Journal of European Economic Association’, Vol. 3, No. 5, 968–1006.
  • Stock J.H., Watson M.W. (1988), Variable Trends in Economic Time Series, ‘Journal of Economic Perspectives’, Vol. 2, 147–174.
  • Warner R.M. (1998), Spectral Analysis of Time Series Data, ‘The Guilford Press’, New York.
  • Watson M.W. (1986), Univariate Detrending Methods with Stochastics Trends, ‘Journal of Monetary Economics’, Vol. 18, No. 1, 49–75.
  • Zarnowitz V., Ozyildirim A. (2001), Time Series Decomposition and Measurement of Business Cycles, Trends and Growth Cycles, ‘Economics Program Working Paper Series’, The Conference Board, New York.
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.ojs-doi-10_1515_cer-2017-0012
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.