PL EN


2017 | 20 | 2 | 91-107
Article title

Unemployment Rates Forecasts – Unobserved Component Models Versus SARIMA Models In Central And Eastern European Countries

Content
Title variants
Prognozowanie stop bezrobocia – porównanie modeli SARIMA i modeli nieobserwowanych komponentów dla wybranych krajów Europy Środkowej i Wschodniej
Languages of publication
EN
Abstracts
EN
In this paper we compare the accuracy of unemployment rates forecasts of eight Central and Eastern European countries. The unobserved component models and seasonal ARIMA models are used within a rolling short-term forecast experiment as an out-of-sample test of forecast accuracy. We find that unemployment rates present clear unconditional asymmetry in three out of eight countries. Half the cases there is no difference between forecasting accuracy of the methods used in the study. In the remaining, a proper specification of seasonal ARIMA model allows to generate better forecasts than from unobserved component models. The forecasting accuracy deteriorates in periods of rapid upward and downward movement and improves in periods of gradual change in the unemployment rates.
PL
W artykule porównano prognozy wskaźników stóp bezrobocia w ośmiu krajach Europy Środkowej i Wschodniej. Zastosowano modele nieobserwowanych komponentów i sezonowe modele ARIMA w przesuwanym oknie i postawiono prognozy krótkoterminowe weryfikowane na podstawie trafności prognozy spoza próby. Wykazano, że w przypadku trzech krajów stopa bezrobocia charakteryzuje się bezwarunkową asymetrią. Generalnie w przypadku stosowanych metod, dla połowy badanych szeregów nie znaleziono statystycznie istotnej różnicy w dokładności stawianych prognoz. W pozostałych przypadkach odpowiednio dobrany sezonowy model ARIMA pozwalał na postawienie lepszych prognoz. Ponadto wykazano, że trafność prognoz pogarsza się w okresach gwałtownych wzrostów i spadków stóp bezrobocia, a poprawia się w okresach nieznacznych zmian wielkości tego wskaźnika.
Year
Volume
20
Issue
2
Pages
91-107
Physical description
Dates
published
2017-06-30
Contributors
  • Poznan University of Economics and Business, Department of Econometrics
References
  • Altissimo F., Violante G.L. (2001), The Non-Linear Dynamics of Output and Unemployment in the U.S., ‘Journal of Applied Econometrics’ 16: 461–486.
  • Belaire-Franch J., Peiró A. (2015), Asymmetry in the relationship between unemployment and the business cycle, ‘Empirical Economics’ 48, 2: 683–697.
  • Będowska-Sójka B. (2015), Unemployment Rate Forecasts. The Evidence from the Baltic States, ‘Eastern European Economics’ 53: 57–67.
  • Caner M., Hansen B.E (2001), Threshold Autoregression with a Unit Root, ‘Econometrica’ 69: 1555–1596.
  • Diebold F.X., Mariano R.S (1995), Comparing predictive accuracy, ‘Journal of Business and Economic Statistics’ 13: 253–263.
  • Doornik J.A., Hendry D.F. (2005), Empirical Econometric Modelling. PcGiveTM11, Timberlake Consultants, London.
  • Hamilton J.D. (2005), What’s real about the business cycle?, Federal Reserve Bank St. Louis Review 2005: 425–452.
  • Harvey A.C. (1989), Forecasting Structural Time Series Models and the Kalman Filter, Cambridge: Cambridge University Press.
  • Harvey A.C. (2006), Forecasting with Unobserved Component Time Series Models, [in:] Elliott G., Granger C.W.J., Timmermann A., Handbook of Economic Forecasting, vol. I, North-Holland, Elsevier.
  • Harvey D., Leybourne S.J., Newbold P. (1997), Testing the Equality of Prediction Mean Squared Errors, ‘International Journal of Forecasting’, vol. 13: 281–291.
  • Hayfield T., Racine J.S. (2008), Nonparametric Econometrics: The np Package, ‘Journal of Statistical Software’ 27(5), URL http://www.jstatsoft.org/v27/i05/.
  • Hyndman R.J., Khandakar Y. (2008), Automatic time series forecasting: the forecast package for R, ‘Journal of Statistical Software’ 26(3): 1–22.
  • Koop G.S., Potter M. (1999), Dynamic Asymmetries in U.S. Unemployment, ‘Journal of Business and Economic Statistics’ 17 (3): 298–312.
  • Koopman S.J., Harvey A.C., Doornik J.A., Shephard N. (2006), Structural Time Series Analyser and Modeller and Predictor STAMP 7, Timberlake Consultants, London.
  • Marcellino M. (2002), Instability and non-linearity in the EMU, Discussion Paper No. 3312, Centre for Economic Policy Research.
  • Maasoumi E., Racine J.S. (2009), A robust entropy-based test of asymmetry for discrete and continuous processes, ‘Econometric Reviews’, 28: 246–261.
  • Milas C., Rothman P. (2005), Multivariate STAR Unemployment Rate Forecasts, ‘Econometrics’ 0502010, EconWPA.
  • Montgomery A.L., Zarnowitz V., Tsay R.S., Tiao G.C. (1998), Forecasting the U.S. Unemployment Rate, ‘Journal of the American Statistical Association’ 93, no. 442: 478–493.
  • Proietti T. (2003), Forecasting the US unemployment rate, ‘Computational Statistics and Data Analysis’ 42: 451–476.
  • Racine J.S., Maasoumi E. (2007), A versatile and robust metric entropy test of time-reversibility, and other hypotheses, ‘Journal of Economics’ 138: 547–567.
  • Skalin J., Teräsvirta T. (2002), Modeling asymmetries and moving equilibria in unemployment rates, Macroeconomic Dynamics 6: 202–241.
  • Snedecor G.W., Cochran W.G. (1989), Statistical Methods, Eighth Edition, Iowa State University Press.
  • Stock J.H., Watson M.W. (1999), Business cycle fluctuations in us macroeconomic time series, in: Taylor, J. B., M., Woodford (ed.) Handbook of Macroeconomics, volume I: 3–64, Elsevier.
  • Teräsvirta T., van Dijk D., Medeiros M.C. (2005), Smooth transition autoregressions, neural networks, and linear models in forecasting macroeconomic time series: A reexamination, ‘International Journal of Forecasting’ 21: 755–774.
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.ojs-doi-10_1515_cer-2017-0014
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.