Full-text resources of CEJSH and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


2023 | 1 | 36-43

Article title

Salivary tumour necrosis factor-alpha and receptor for advanced glycation end products as prognostic and predictive markers for recurrence in oral squamous cell carcinoma – a pilot study

Content

Title variants

Languages of publication

Abstracts

EN
Introduction and aim. Tumour necrosis factor-alpha (TNF-α) belongs to the cytokine family TNF/TNFR. As a multifunctional cytokine, TNF-α plays a significant role in diverse and a variety of cellular events such as cell survival, proliferation, differentiation, and death. As a pro-inflammatory cytokine, TNF-α acts as a bridge between inflammation and carcinogenesis. Receptor for advanced glycation end products (RAGE) are cellular receptors belonging to the immunoglobulin superfamily. As one of the primary mediators of innate immunity, acute and chronic inflammatory disorders, and certain cancers, RAGE signaling plays an important role. The aim of the present study is to analyze the prognostic significance of salivary TNF-α and RAGE in oral squamous cell carcinoma. Material and methods. A study was conducted testing saliva samples collected from ten patients with well-differentiated and moderately differentiated oral squamous cell carcinomas. To determine the levels of TNF-α and RAGE in unstimulated saliva from patients, an ELISA kit from RAY BIOTECH was used for the study, and the readings were read at 450 nm. Statistical analysis was performed using SPSS software. Version 23 of SPSS was used to plot the standard curve. Statistical comparisons were done using Mann-Whitney U test and ROC analysis. Results. Salivary TNF-α and RAGE in patients were considered to be induced by radiotherapy at a higher level in moderately differentiated squamous cell carcinoma when compared to well differentiated squamous cell carcinoma. Thus, there is an increase in the induced Salivary TNF-α and RAGE levels by radiotherapy with increase in the histological stages of oral squamous cell carcinoma. The statistical analysis also proved the same. Conclusion. Hence salivary TNF-α and RAGE may be used as a biomarker for oral cancer to predict the prognosis.

Year

Issue

1

Pages

36-43

Physical description

Dates

published
2023

Contributors

  • Department of Pathology, Madha Medical College and Research Institute, Chennai, Tamilnadu, India
  • Department of Microbiology, Madha Medical College and Research Institute, Chennai, India
  • Dr. Rai CBCC Cancer Centre, Chennai, Tamilnadu, India

References

  • Obata K, Yutori H, Yoshida K, Sakamoto Y, Ono K, Ibaragi S. Relationships between squamous cell carcinoma antigen and cytokeratin 19 fragment values and renal function in oral cancer patients. Int J Oral Maxillofac Surg. 2022;S09015027(22)00353-00358. doi: 10.1016/j.ijom.2022.08.019.
  • Meng Q, Wu F, Li G, et al. Exploring precise medication strategies for OSCC based on single-cell transcriptome analysis from a dynamic perspective. Cancers (Basel). 2022;14(19):4801. doi: 10.3390/cancers14194801.
  • Yuan Y, Sturgis EM, Zhu L, et al. A functional variant at the miRNA binding site inE2F1gene is associated with risk and tumor HPV16 status of oropharynx squamous cell carcinoma. Mol Carcinog. 2017;56(3):1100–1106. doi:10.1002/mc.22576
  • Nijakowski K, Gruszczyński D, Kopała D, Surdacka A. Salivary metabolomics for oral squamous cell carcinoma diagnosis: A systematic review. Metabolites. 2022;12(4):294. doi: 10.3390/metabo12040294.
  • Hyvärinen E, Savolainen M, Mikkonen JJW, Kullaa AM. Salivary metabolomics for diagnosis and monitoring diseases: Challenges and possibilities. Metabolites. 2021;11(9):587.doi:10.3390/metabo11090587
  • Hynne H, Sandås EM, Elgstøen KBP, et al. Saliva metabolomics in dry mouth patients with head and neck cancer or Sjögren’s syndrome. Cells. 2022;11(3):323. doi:10.3390/ cells11030323
  • Saghizadeh M, Ong JM, Garvey WT, Henry RR, Kern PA. The expression of TNF alpha by human muscle. Relationship to insulin resistance. J Clin Invest . 1996; 15,97(4):1111–1116. doi:10.1172/JCI118504
  • Josephs SF, Ichim TE, Prince SM, Kesari S. Unleashing endogenous TNF-alpha as a cancer immunotherapeutic. J Transl Med. 2018;doi:10.1186/s12967-018-1611-7
  • Brinkman BM, Zuijdeest D, Kaijzel EL, Breedveld FC, Verweij CL. Relevance of the tumor necrosis factor alpha (TNF alpha) -308 promoter polymorphism in TNF alpha gene regulation. J Inflamm. 1995;46(1):32–41. Available from: https://www.ncbi.nlm.nih.gov/pubmed/8832970
  • Bessaleli E, Scheinfeld N, Kroumpouzos- G. Squamous cell carcinoma of the cervix arising in a patient on adalimumab-a need for cervical screenings in patients 42 European Journal of Clinical and Experimental Medicine 2023; 21 (1): 36–43 on tumor necrosis factor inhibitors. Dermatol Online J. 2018;24(5). Available from: https://www.ncbi.nlm.nih.gov/ pubmed/30142745
  • Zielińska K, Karczmarek-Borowska B, Kwaśniak K, et al. Salivary IL-17A, IL-17F, and TNF- Are Associated with Disease Advancement in Patients with Oral and Oropharyngeal Cancer. J Immunol Res. 2020;2020:3928504. doi:10.1155/2020/3928504
  • Sethi G, Sung B, Aggarwal BB. TNF: a master switch for inflammation to cancer. Front Biosci. 2008;13:5094–5107. doi:10.2741/3066
  • Cunha FQ, Poole S, Lorenzetti BB, Ferreira SH. The pivotal role of tumour necrosis factor alpha in the development of inflammatory hyperalgesia. Br J Pharmacol. 1992;107(3):660–664. doi:10.1111/j.1476-5381.1992. tb14503.x
  • ThamaraiSelvi VT, Brundha MP. Salivaomics-A Review. European Journal of Molecular & Clinical Medicine. 2020;7(1):2914–2931. Available from: https://www.ejmcm. com/article_3336_7e4099c5dddc87a6bd92447a5c3cbf5e.pdf
  • Rithanya M, Brundha MP. Molecular immune pathogenesis and diagnosis of COVID-19 - A review. Int J Curr Res Rev. 2020;69–73. Available from: https://pesquisa.bvsalud. org/global-literature-on-novel-coronavirus-2019-ncov/resource/pt/covidwho-1011906
  • Wang Y, Yang J, Huang J, Tian Z. Tumor Necrosis Factor-α Polymorphisms and Cervical Cancer: Evidence from a Meta-Analysis. Gynecol Obstet Invest. 2020;85(2):153–158. doi:10.1159/000502955
  • Hofmann MA, Drury S, Fu C, et al. RAGE Mediates a Novel Proinflammatory Axis: A Central Cell Surface Receptor for S100/Calgranulin Polypeptides. Cell. 1999;97(7):889– 901. Available from: https://www.cell.com/cell/abstract/ S0092-8674(00)80801-6
  • Tian J, Avalos AM, Mao SY, et al. Toll-like receptor 9-dependent activation by DNA-containing immune complexes is mediated by HMGB1 and RAGE. Nat Immunol. 2007;8(5):487–496. doi:10.1038/ni1457
  • Orlova VV, Choi EY, Xie C, et al. A novel pathway of HMGB1-mediated inflammatory cell recruitment that requires Mac-1-integrin. EMBO J. 2007;26(4):1129–1139. doi:10.1038/sj.emboj.7601552
  • Taguchi A, Blood DC, del Toro G, et al. Blockade of RAGE-amphoterin signalling suppresses tumour growth and metastases. Nature. 2000;405(6784):354–360. doi:10.1038/35012626
  • Ishihara K, Tsutsumi K, Kawane S, Nakajima M, Kasaoka T. The receptor for advanced glycation end-products (RAGE) directly binds to ERK by a D-domain-like docking site. FEBS Lett. 2003 ;550(1–3):107–113. doi:10.1016/s00145793(03)00846-9
  • Syed DN, Aljohani A, Waseem D, Mukhtar H. Ousting RAGE in melanoma: a viable therapeutic target? Semin Cancer Biol. 2018;49:20–28. Available from: https://www. ncbi.nlm.nih.gov/pmc/articles/PMC5910174/
  • Chiamulera MMA, Zancan CB, Remor AP, Cordeiro MF, Gleber-Netto FO, Baptistella AR. Salivary cytokines as biomarkers of oral cancer: a systematic review and meta-analysis. BMC Cancer. 2021;21(1):205.doi:10.1186/s12885021-07932-3
  • Gupta DS, Gupta S, Gupta O, Chandra S. Genetic polymorphism of tumor necrosis factor alpha (TNF-Α) and tumor necrosis factor beta (TNF-Β) genes and risk of oral pre cancer and cancer. Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology. 2019;128(1) p. e88.doi:10.1016/j.oooo.2019.02.224
  • Agnihotri SK, Kumar B, Jain A, et al. Clinical significance of circulating serum levels of sCD95 and TNF-α in cytoprotection of cervical cancer. Rep Biochem Mol Biol. 2022;10(4):711–721. doi:10.52547/rbmb.10.4.711
  • Khurshid Z, Zafar MS, Khan RS, Najeeb S, Slowey PD, Rehman IU. Role of Salivary Biomarkers in Oral Cancer Detection. Adv Clin Chem. 2018;86:23–70. doi:10.1016/ bs.acc.2018.05.002
  • Rao E, Hou Y, Huang X, et al. All-trans retinoic acid overcomes solid tumor radioresistance by inducing inflammatory macrophages. Sci Immunol. 2021;6(60). doi:10.1126/ sciimmunol.aba8426
  • Bossi P, Bergamini C, Miceli R, et al. Salivary Cytokine Levels and Oral Mucositis in Head and Neck Cancer Patients Treated With Chemotherapy and Radiation Therapy. Int J Radiat Oncol Biol Phys. 2016;96(5):959–966. doi:10.1016/j. ijrobp.2016.08.047
  • Harsha L, Brundha MP. Prevalence of Dental Developmental Anomalies among Men and Women and its Psychological Effect in a Given Population. Journal of Pharmaceutical Sciences and Research; Cuddalore. 2017;9(6):869–873. Available from: https://www.proquest.com/scholarly-journals/prevalence-dental-developmental-anomalies-among/ docview/1917938864/se-2
  • Timothy CN, Samyuktha PS, Brundha MP. Dental pulp Stem Cells in Regenerative Medicine-A Literature Review. Research Journal of Pharmacy and Technology. 2019;12(8):4052–4056. Available from: https://www. indianjournals.com/ijor.aspx?target=ijor:rjpt&volume=12&issue=8&article=088
  • Oton-Leite AF, Silva GBL, Morais MO, et al. Effect of low-level laser therapy on chemoradiotherapy-induced oral mucositis and salivary inflammatory mediators in head and neck cancer patients. Lasers Surg Med. 2015;47(4):296–305. doi:10.1002/lsm.22349
  • G D, Nandan SRK, Kulkarni PG. Salivary Tumour Necrosis Factor-α as a Biomarker in Oral Leukoplakia and Oral Squamous Cell Carcinoma. Asian Pac J Cancer Prev. 2019;20(7):2087–2093. doi:10.31557/APJCP.2019.20.7.2087
  • Krishnan R, Thayalan DK, Padmanaban R, Ramadas R, Annasamy RK, Anandan N. Association of serum and salivary tumor necrosis factor-α with histological grading in oral cancer and its role in differentiating 43Salivary tumour necrosis factor-alpha and receptor for advanced glycation end products as prognostic and predictive marker premalignant and malignant oral disease. Asian Pac J Cancer Prev. 2014;15(17):7141–7148. doi:10.7314/apjcp.2014.15.17.7141
  • Nankali M, Karimi J, Goodarzi MT, et al. Increased Expression of the Receptor for Advanced Glycation End-Products (RAGE) Is Associated with Advanced Breast Cancer Stage. Oncol Res Treat. 2016;39(10):622–628. doi:10.1159/000449326
  • Sims GP, Rowe DC, Rietdijk ST, Herbst R, Coyle AJ. HMGB1 and RAGE in Inflammation and Cancer, Annual Review of Immunology. 2010;28(2):367–388. doi:10.1146/ annurev.immunol.021908.132603
  • Bhawal UK, Ozaki Y, Nishimura M, et al. Association of Expression of Receptor for Advanced Glycation End Products and Invasive Activity of Oral Squamous Cell Carcinoma. Oncology. 2005;69(3)255. doi:10.1159/000087910
  • Abe R, Yamagishi SI. AGE-RAGE system and carcinogenesis. Curr Pharm Des. 2008;14(10):940–945. doi:10.2174/138161208784139765

Document Type

Publication order reference

Identifiers

Biblioteka Nauki
2208875

YADDA identifier

bwmeta1.element.ojs-doi-10_15584_ejcem_2023_1_5
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.