Full-text resources of CEJSH and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


2024 | 28 | 1 | 26-38

Article title

Asymptotic Normality of Single Functional Index Quantile Regression for Functional Data with Missing Data at Random

Content

Title variants

PL
Asymptotyczna normalność regresji kwantylowej pojedynczego wskaźnika funkcyjnego dla danych funkcjonalnych z losowymi brakującymi danymi

Languages of publication

Abstracts

PL
W artykule autorzy prowadzą rozważania dotyczące problemu nieparametrycznej estymacji funkcji regresji, a mianowicie rozkładu warunkowego i kwantyla warunkowego w modelu pojedynczego indeksu funkcjonalnego (SFIM) przy założeniu niezależnych i z identycznym rozkładem danych z losowymi brakami danych. Głównym rezultatem przeprowadzonych badań było ustalenie asymptotycznych właściwości estymatora, takich jak prawie całkowite współczynniki zbieżności. Co więcej, asymptotyczną normalność konstruktów uzyskano dla pewnych łagodnych warunków. Na koniec omówiono, jak zastosować uzyskany wynik do skonstruowania przedziałów ufności.
EN
This work addresses the problem of the nonparametric estimation of the regression function, namely the conditional distribution and the conditional quantile in the single functional index model (SFIM) under the independent and identically distributed condition with randomly missing data. The main result of this study was the establishment of the asymptotic properties of the estimator, such as the almost complete convergence rates. Moreover, the asymptotic normality of the constructs was obtained under certain mild conditions. Lastly, the authors discussed how to apply the result to construct confidence intervals.

Year

Volume

28

Issue

1

Pages

26-38

Physical description

Dates

published
2024

Contributors

author
  • University Djillali LIABES of Sidi Bel Abbes, Algeria
author
  • University Djillali LIABES of Sidi Bel Abbes, Algeria
author
  • University Djillali LIABES of Sidi Bel Abbes, Algeria

References

  • Bosq, D., and Lecoutre, J. P. (1987). Théorie de L'estimation Fonctionnelle. Economica.
  • Bouchentouf, A. A., Djebbouri, T., Rabhi, A., and Sabri, K. (2014). Strong Uniform Consistency Rates of Some Characteristics of the Conditional Distribution Estimator in the Functional Single Index Model. Appl. Math., 41(4), 301-322.
  • Cai, Z. (2002). Regression Quantiles for Time Series. Econometric Theory, (18), 169-192.
  • Cheng, P. E. (1994). Nonparametric Estimation of Mean Functional with Data Missing at Random. Journal of the American Statistical Association, 89(425), 81-87.
  • Deheuvels, P., and Einmahl, J. H. J. (2000). Functional Limit Laws for the Increments of Kaplan-Meier Product-Limit Processes and Applications. The Annals of Probability, (28), 1301-1335.
  • Efromovich, S. (2011). Nonparametric Regression with Responses Missing at Random. Journal of Statistical Planning and Inference, 141, 3744-3752.
  • Ezzahrioui, M., and Ould-Saïd, E. (2008). Asymptotic Results of a Nonparametric Conditional Quantile Estimator for Functional Time Series. Comm. Statist. Theory and Methods, 37(16-17), 2735-2759.
  • Ferraty, F., Sued, F., and Vieu, P. (2013). Mean Estimation with Data Missing at Random for Functional Covariables. Statistics, 47(4), 688-706.
  • Ferraty, F., and Vieu, P. (2003). Functional Nonparametric Statistics: A Double Infinite Dimensional Framework. Recent Advances and Trends in Nonparametric Statistics, M. Akritas and D. Politis (Ed.). Elsevier.
  • Gannoun, A., Saracco, J., and Yu, K. (2003). Nonparametric Prediction by Conditional Median and Quantiles. J. Stat. Plann. and Inf., (117), 207-223.
  • Hamri, M. M., Mekki, S. D., Rabhi, A. and Kadiri, N. (2022). Single Functional Index Quantile Regression for Independent Functional Data Under Right-Censoring. Econometrics, 26(1), 31-62. https://doi.org/10.15611/eada.2022.1.03 Kadiri, N., Mekki, S. D., and Rabhi, A. (2023). Single Functional Index Quantile Regression for Functional Data with Missing Data at Random. Econometrics. Ekonometria. Advances in Applied Data Analysis, 27(3), 1-19. DOI 10.15611/eada.2023.3.01 Liang, H., and de Uña-Alvarez, J. (2010). Asymptotic Normality for Estimator of Conditional Mode under Left-Truncated and Dependent Observations. Metrika, 72(1), 1-19.
  • Ling, N., Liang, L., and Vieu, P. (2015). Nonparametric Regression Estimation for Functional Stationary Ergodic Data with Missing at Random. Journal of Statistical Planning and Inference, (162), 75-87.
  • Ling, N., Liu, Y., and Vieu, P. (2016). Conditional Mode Estimation for Functional Stationary Ergodic Data with Responses Missing at Random. Statistics, 50(5), 991-1013.
  • Mekki, S. D., Kadiri, N., and Rabhi, A. (2021). Asymptotic Properties of the Semi-Parametric Estimators of the Conditional Density for Functional Data in the Single Index Model with Missing Data at Random. Statistica, 81(4), 399-422.
  • Ould-Saïd, E., and Djabrane, Y. (2011). Asymptotic Normality of a Kernel Conditional Quantile Estimator under Strong Mixing Hypothesis and Left-Truncation. Communications in Statistics. Theory and Methods, 40(14), 2605-2627.
  • Ould-Saïd, E., and Tatachak, A. (2011). A Nonparametric Conditional Mode Estimate under RLT Model and Strong Mixing Condition. International Journal of Statistics and Economics, (6), 76-92.
  • Rabhi, A., Kadiri, N., and Akkal, F. (2021). On the Central Limit Theorem for Conditional Density Estimator in the Single Functional Index Model.Applications and Applied Mathematics: An International Journal (AAM), 16(2), 844-866.
  • Wang, H., and Zhao, Y. (1999). A Kernel Estimator for Conditional T-Quantiles for Mixing Samples and Its Strong Uniform Convergence (in Chinese). Math. Appl. (Wuhan), (12), 123-127.
  • Zhou, Y., and Liang, H. (2003). Asymptotic Properties for L1Norm Kernel Estimator of Conditional Median under Dependence. J. Nonparametr. Stat., (15), 205-219.

Document Type

Publication order reference

Identifiers

Biblioteka Nauki
31233546

YADDA identifier

bwmeta1.element.ojs-doi-10_15611_eada_2024_1_03
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.