Full-text resources of CEJSH and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


2021 | 3 | 46-57

Article title

Making Data Review by a Novel Calculation Algorithm for Detecting Objects’ Views

Content

Title variants

PL
Wykonywanie przeglądu danych przez nowoczesny algorytm obliczeniowy do wykrywania widoków obiektów

Languages of publication

Abstracts

PL
W badaniu przetwarzanie obrazu zostało wykonane za pomocą oprogramowania opracowanego w języku programowania Python poprzez przechwytywanie widoków obiektów. W tym kontekście stworzono algorytm do obliczania ilości substancji w konkretnym pojemniku przy stałym kącie kamery; zmierzona ilość substancji jako informacja została wysłana do inteligentnych urządzeń działających z systemami Android. Ilość przesyłanych informacji została pokazana w interfejsie użytkownika w postaci percentyla dzięki opracowanemu algorytmowi i programowi. Algorytm w tym oprogramowaniu wykonuje kadrowanie i konwersję do formatu czarno-białego na przechwyconym zdjęciu za pomocą etapów przetwarzania obrazu, oblicza, skanując, czarne obszary i proporcjonalnie te wartości do obszaru pojemnika, podając informacje o poziomie substancji. Możliwe jest wykorzystanie opracowanego oprogramowania jako alternatywnego systemu detekcji i oceny procesów detekcji obiektów, przetwarzania obrazu i kontroli poziomu.
EN
In this study, an image processing was performed with a software developed in Python programming language by capturing object views. In this context, an algorithm was created to calculate the amount of substance in a particular container at a fixed camera angle; the measured substance amount as information was sent to smart devices operating with Android Systems. The amount of information transmitted was shown in the user interface as the form of a percentile, thanks to an algorithm and the developed program. The algorithm in this software performs cropping and conversion to black and white format on the captured photo using image processing steps, and it calculates by scanning the black areas and proportionally these values to the area of the container, giving information about the level of the substance. It is possible to use the developed software as an alternative detection and evaluation system for object detection, image processing, and level control processes.

Keywords

Year

Issue

3

Pages

46-57

Physical description

Dates

published
2021

Contributors

author
  • Mugla Sitki Kocman University
  • Mugla Sitki Kocman University
  • Adam Mickiewicz University in Poznań

References

  • Ağın, O., and Malaslı, M. Z. (2016). The place and importance of image processing techniques in sustainable agriculture. Journal of Agricultural Machinery Science, 12(3), 199-206.
  • Albayrak, Y., Koçer, A., and Uslu, S. (2013). Temperature control from android devices via web services. Academic Informatics, 1(27).
  • Anandhalli, M., and Baligar, V. P. (2018). A novel approach in real-time vehicle detection and tracking using Raspberry Pi. Alexandria Engineering Journal, 57(3), 1597-1607.
  • Babayiğit, B., and Büyükpatpat, B. (2019). Design and implementation of IoT-based irrigation and remote monitoring system. Turkey Informatics Foundation Journal of Computer Science and Engineering, 12(2), 13-19. Retrieved July 12, 2021 from https://dergipark.org.tr/tr/pub/tbbmd/ issue/50642 /635505
  • Banerjee, S., Sethia, D., Mittal, T., Arora, U., and Chauhan, A. (2013, November). Secure sensor node with Raspberry Pi (2013 International Conference on Multimedia, Signal Processing and Com - munication Technologies (IMPACT), pp. 26-30).
  • Çavdaroğlu, G. Ç. (2017). Processing of traffic density map images using image processing techniques. Academic Platform Journal of Engineering and Science (APJES), 5(2), 22-28. Retrieved July 21, 2021 from https://dergipark.org.tr/en/pub/apjes/issue/30323/289448
  • Dursun, M., and Çuhadar, İ. (2018). Secure video streaming implementation for unmanned air vehicle (UAV) data link with Raspberry Pi 3 over https. Journal of Information Technologies, 11(1), 23-28.
  • Ferdoush, S., and Li, X. (2014). Wireless sensor network system design using Raspberry Pi and Arduino for environmental monitoring applications. Procedia Computer Science, 34, 103-110. Retrieved September 6, 2021 from https://tr.wikipedia.org/wiki/Raspberry_Pi
  • Jindarat, S., and Wuttidittachotti, P. (2015, April). Smart farm monitoring using Raspberry Pi and Arduino (IEEE 2015 International Conference on Computer, Communications, and Control Technology, pp. 284-288).
  • Khuu Minh, C., and Le Trung, C. (2014). Proposal of the 3D and temporal GIS for detecting moving objects with Raspberry Pi moving client base in urban conditions, GeoInformatics for Spatial-Infrastructure Development in Earth & Allied Sciences (GIS-IDEAS). HoChiMinh City.
  • Kırkaya, A. (2020). Smart Agricultural Technologies Applications (3rd International Conference on Awareness, pp. 1-12).
  • Nguyen, H. Q., Loan, T. T. K., Mao, B. D., and Huh, E. N. (2015, July). Low cost real-time system monitoring using Raspberry Pi (7th International Conference on Ubiquitous and Future Networks (IEEE 2015), pp. 857-859).
  • Osmanoğlu, U. Ö., Mutlu, F., Gürsoy, H., and Şanlısoy, S. (2019). Use of image processing and analysis in medicine and an application. Osmangazi Journal of Medicine, 41(1), 6-16. Retrieved July 12, 2021 from https://doi.org/10.20515/otd.426347
  • Prokopov, A. (2016). Moving object detection and tracking using dynamic background and foreground separation for the purpose of traffic analysis on mobile devices (Bachelor's thesis). Tartu: University of Tartu Institute of Computer Science.
  • Sazak, T., and Albayrak, Y. (2017). A system design that collects and remotely tracks environment data on the Internet of Things (IoT) (19th Academic Informatics Conference, Aksaray/Turkey).
  • Simaria, R. D., and Pipalia, D. S. (2015, May). Real time object detection & tracking system (locally and remotely) with rotating camera. International Journal on Recent and Innovation Trends in Computing and Communication, 3(5), 3058-3063.
  • Ujjainiya, L., and Chakravarthi, M. K. (2015). Raspberry-Pi based cost effective vehicle collision avoidance system using image processing. ARPN J. Eng. Appl. Sci., 10(7).
  • Vijayalaxmi, K. A., Srujana, B., & Kumar, P. R. (2014). Object detection and tracking using image processing. Global Journal of Advanced Engineering Technologies, 9(1), 113-115.
  • Vujović, V., and Maksimović, M. (2015). Raspberry Pi as a sensor web node for home automation, Computers & Electrical Engineering, 44, 153-171.
  • Yaman, K., and Aktürk, N. (2001). Determination of the person density with image processing. Konya: UMTS, Selçuk University.
  • Yüzgeç, U., and Aba, Ö. (2017). Development of a smart home application using Raspberry Pi. Bilecik Şeyh Edebali University Journal of Science, 4(1), 21-29.

Document Type

Publication order reference

Identifiers

Biblioteka Nauki
2033011

YADDA identifier

bwmeta1.element.ojs-doi-10_15611_ie_2021_3_05
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.